L)
s Protecting Your Voice from Speech Synthesis Attacks

Zihao Liu
Iowa State University
Ames, Iowa, USA
zihaoliu@iastate.edu

Yan Zhang
Iowa State University
Ames, Iowa, USA
yanzh@iastate.edu

Chenglin Miao
Iowa State University
Ames, Iowa, USA
cmiao@iastate.edu

ABSTRACT

In recent years, much attention has been paid to speech synthesis,
which aims to generate synthetic speeches in a voice of a target
speaker. Although the speech synthesis technique has facilitated
a wide spectrum of applications that positively impact our daily
lives, it can also be used by attackers to perform speech synthesis
attacks. An attacker can use this technique to mimic the voice of a
victim and transform arbitrarily chosen text or voice samples into
the same content spoken by the victim. To protect a speaker’s voice
from speech synthesis attacks, in this paper, we propose two novel
defense schemes that can be used by the speaker to process his
or her speeches before publishing them on social media platforms
or sending them to others. The processed speeches cannot only
significantly degrade the performance of speech synthesis systems
but also keep the sound of the speaker’s voice so that they can still
be used for normal purposes. The desirable performance of the pro-
posed defense schemes is verified through extensive experiments
conducted on several real-world speaker recognition (SR) systems
and a user study on a public crowdsourcing platform.
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1 INTRODUCTION

Today, we are living in a voice-driven world. The consumption of
audio content and voice-based automated services are penetrating
every corner of human society and becoming a necessary part of our
lives. Many content creators are moving to audio platforms such as
SoundCloud [9] and Audible [6]. The tech giants like Google, Ama-
zon, and Apple are investing heavily in their voice-based services.
In addition, the pervasive social media platforms (e.g., Facebook,
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WhatsApp, and TikTok) make it very easy for us to share and enjoy
various audio contents.

With the above advancements, more and more users expect to
be able to customize the voice of various voice agents as they like.
For example, some users may like to hear their familiar voice when
using audiobooks or voice-based traffic navigation. To address this
need, much attention has been paid to speech synthesis, which aims
to generate synthetic speech in a voice of a target speaker. The state-
of-the-art speech synthesis methods mainly rely on deep neural
networks (DNNs) to achieve outstanding performance, and these
methods can be divided into two categories: voice conversion (VC)
(19, 22, 37, 40, 41, 52] and text-to-speech (TTS) [16, 29, 30, 36, 51, 57].

The goal of VC is to convert the voice samples of a source speaker
into the same content spoken by a target speaker, while TTS aims to
transform arbitrary text into the spoken words of the target speaker.
Speech synthesis has enabled a wide spectrum of applications with
positive effects on our daily life. For example, this technology can
help people who have lost their voice communicate with others
[10, 43]. It can also benefit spoken language translation [35, 47] and
increase human trust in healthcare robots [33].

While we are enjoying the positive uses of speech synthesis, we
should not neglect the fact that it can also be used by attackers to
perform malicious attacks. According to the Wall Street Journal, in
August 2019, criminals used artificial intelligence-based software to
impersonate the voice of a CEO who worked in a UK.-based energy
firm and successfully swindled more than $243,000 by speaking
on the phone [2]. In October 2021, Forbes reported that speech
synthesis had been used in a huge heist, where fraudsters cloned
a company director’s speech based on this technology and finally
stole $35 million from a bank [3]. These reports show that speech
synthesis has been misused by malicious parties and brought severe
damage in practice. In this paper, we refer to the above attack as
speech synthesis attack, where an attacker aims to mimic the voice
of a target speaker and transform his chosen text or voice samples
into the same content spoken by the target. Besides carrying out
a heist, speech synthesis attack can also be used for many other
malicious purposes. For example, it can fool the voice-based authen-
tication systems built in various devices (e.g., laptops, tablets, or
smartphones) and allow the attacker to gain access to these devices
[14, 50, 54, 55, 60, 62, 65, 70, 71].

While many defense schemes have been developed to mitigate
the abuse of speech synthesis, the majority concentrate on fake
speech detection [12, 13, 18, 20, 23, 27, 63, 68, 69]. To the best of
our knowledge, only one work, Attack-VC [31], focuses on fake
speech prevention. Existing detection algorithms usually achieve
the detection goal by discovering artifacts [12, 13, 26, 39, 64] of fake
speeches or identifying unique evidence of real speeches, such as
liveness evidence [18, 63, 69]. These defenses have been shown to
rely heavily on some specific assumptions and recording conditions.
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In addition, the detection algorithm is usually implemented after
severe consequences have already occurred. The above issues have
significantly limited the application of existing detection algorithms.
Attack-VC studies the prevention of unauthorized speech synthesis
by adding carefully-designed perturbations to the target speaker’s
speeches before the attacker obtains them. Despite the significant
contributions of Attack-VC to this new area, it does have certain
limitations. First, Attack-VC faces a challenge in simultaneously
reducing the attack’s effectiveness while maintaining the normal
usability of the target speaker’s speeches. Second, this scheme
primarily follows a white-box setting, requiring the defender to
have full knowledge of a speech synthesis system. However, in
reality, users may only have access to the system’s API and cannot
get its details. Third, Attack-VC lacks efficiency in protecting a
speaker’s voice, as it necessitates a separate optimization process
for each of the target speaker’s speech samples to create a protected
version.

To address the above limitations, in this paper, we propose a
novel defense scheme that aims to prevent the attacker from gener-
ating synthetic speeches with high quality. The proposed scheme is
based on a black-box setting, and it does not require the details of
potential speech synthesis systems. The basic idea of our defense
scheme is to modify the target speaker’s speeches in the frequency
domain before publishing them or sending them to others. Our
investigation shows that the speech signal contains some specific
frequencies on which the modification can significantly degrade the
performance of the speech synthesis models but has little impact
on human perception. By identifying these important frequencies
for each speech sample and modifying the signal accordingly, the
target speaker can effectively protect his or her voice from speech
synthesis attacks. Besides, to make the defense efficient, we also
propose a speaker-level defense scheme, based on which the target
speaker does not need to identify the important frequencies for
each of his or her speeches. Instead, the target speaker can use a
universal defense strategy to efficiently process any speech. The
performance of the proposed defense schemes is evaluated on sev-
eral real-world speaker recognition (SR) systems. We also conduct
a user study to evaluate the impact of these schemes on human
perception. Extensive experimental results demonstrate that our
defense schemes can significantly degrade the performance of exist-
ing speech synthesis systems while guaranteeing that the processed
speeches can still be used for their normal purposes.

2 BACKGROUND AND RELATED WORK
2.1 Speech Synthesis

In speech synthesis attacks, the attacker aims to steal a target
speaker’s voice identity and generate a synthetic version of the
target’s voice, speaking some specific words chosen by the attacker.
The history of generating synthetic speech can be traced back to the
1930s [45], and many speech synthesis methods have been proposed
since then [15, 38, 58]. In recent years, with the rapid development
of deep learning techniques, deep neural network (DNN)-based
speech synthesis has drawn much attention and has significantly
improved the quality of the synthesized speech [16, 19, 22, 29, 30,
36, 37, 40, 41, 51, 52, 57]. However, the outstanding performance of
DNN-based speech synthesis also strengthens the attackers who
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want to perform speech synthesis attacks and brings more security
concerns. In this paper, we mainly focus on two types of DNN-based
speech synthesis systems that can be used to perform the speech
synthesis attacks: voice conversion (VC) and text-to-speech (TTS).

2.1.1  Voice conversion. The VC systems aim to convert a speech
signal uttered by a source speaker to sound as if it was uttered by
a target speaker while keeping the linguistic contents unchanged.
Figure 1 shows the general framework of state-of-the-art voice
conversion models [32], which mainly contains a content encoder,
a speaker encoder, and a decoder. The inputs of the content en-
coder and the speaker encoder are the speeches provided by the
source speaker and the target speaker, respectively. The goal of
the content encoder is to extract the content information from the
source speech, and the speaker encoder aims to embed the voice
characteristics of the target speaker as a latent vector. The outputs
of the two encoders are fed into the decoder, which can generate
the synthetic speech. The sound of the synthetic speech is similar to
that of the target speech, but the content information is the same as
that of the source speech. VC has been widely adopted to perform
speech synthesis attacks [42, 44, 67], where the source speech is
chosen by the attacker, and the target speech is collected by the
attacker from the victim speaker. In practice, there are many ways
that can be used by the attacker to collect the victim’s speech. For
example, the attacker may obtain the victim’s speech from public or
private media. He can also collect the speech samples by recording
the victim’s speech in a public setting.

2.1.2  Text-to-speech. Similar to VC, TTS takes arbitrary texts and
the target utterance that provides voice characteristics as inputs
to synthesize a speech [16, 24, 30, 36, 51, 53]. The general frame-
work for the DNN-based TTS systems is shown in Figure 2. The
speaker encoder here is similar to that in Figure 1, and it outputs
an embedding that captures the voice characteristics of the target
speaker. The text analysis module is used to extract the linguistic
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Figure 3: Workflow of the speech synthesis attack and the defense scheme.

features from the input text, which is chosen by the attacker. Both
the embedding and linguistic features are fed into the decoder to
generate the synthetic speech.

2.2 Defending against Speech Synthesis Attacks

To mitigate speech synthesis attacks, many defense methods have
been developed. Most focus on the post-detection of synthetic
speeches while only one work, Attack-VC [31], studies how to
prevent the attacker from generating synthetic speeches.

Existing detection methods focus either on identifying the
speaker or detecting the artifacts of fake speeches. SR systems
are engineered to detect speakers. They typically enroll a speaker’s
voice identity and then verify if a new voice sample matches the
enrolled voice identity. However, a recent work [67] found that
modern SR systems are vulnerable to speech synthesis attacks
[42, 44, 67], highlighting the need for more advanced algorithms to
enhance the reliability of SRs. In addition to considering the bio-
metrics embedded in speeches, many works detect fake speeches
by searching for supporting evidence. Some of them [18, 63, 69]
verify the evidence of whether a speech is spoken by a live per-
son or is uttered by a registered fraudster [23]. Other detection
algorithms [12, 13, 56, 68] focus on identifying the traces produced
by machines. However, these works usually rely on specific as-
sumptions or recording conditions, such as specific devices and
distances between the microphone and the speaker. Additionally,
existing detection algorithms are sometimes sensitive to contents
and languages [26]. The above issues have significantly limited the
application of existing detection algorithms in practice.

Unlike the fake speech detection algorithms implemented after
the speech synthesis process, Attack-VC focuses on defense before-
hand. This mechanism mitigates the attack by adding carefully-
designed perturbations to speech samples. However, to achieve
good defense performance, Attack-VC needs to add large perturba-
tions to speeches. As a result, the perturbed speeches do not sound
like the original speeches, which may affect the normal usability of
these speeches. Besides, Attack-VC is based on white-box setting,
where the defender needs to know the details about the speech
synthesis system (e.g., model parameters) adopted by the attacker,
which are usually difficult to obtain in practice. Additionally, this
mechanism requires optimization to generate perturbations for each
speech sample, making it inefficient for time-sensitive applications
such as sending instant voice messages.
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3 PROBLEM SETTING

As shown in Figure 3, we consider a scenario where an attacker
aims to imitate a target speaker’s voice by launching speech syn-
thesis attacks. We assume that the attacker can obtain some speech
samples of the target speaker (i.e., the victim) from public or private
media. For example, the attacker can obtain these speech samples
from the video/audio published by the target speaker on some so-
cial media platforms (e.g., Facebook, Instagram, and TikTok). In
addition, the attacker may be a friend of the target speaker and
they may send voice messages to each other via messaging apps
(e.g., WhatsApp and WeChat). It is easy for the attacker to extract
some speech samples from the video/audio or voice messages he
obtained. After collecting the speech samples, the attacker uses the
speech synthesis system based on either VC or TTS to generate the
synthetic speech with arbitrary chosen contents.

Our goal in this paper is to develop a defense scheme that can
be used to protect the target speaker’s voice from speech synthe-
sis attacks. As shown in Figure 3, the target speaker can use our
proposed scheme to process his or her speeches to generate de-
fense speeches before publishing them on social media platforms or
sending them to others. Even if the attacker obtains the processed
speech samples, he cannot generate his desirable synthetic speeches
based on existing speech synthesis systems. In addition, we hope
that the proposed defense scheme has little impact on the sound of
the target speaker’s voice so that the processed speeches can still
be used for normal purposes. For example, the processed speeches
should be normal for human perception.

We formally define the problem targeted in this paper as follows.
Suppose x is the speech sample collected by the attacker from
the target speaker. D denotes the defense strategy that is derived
based on our proposed scheme, and it is used to process the target’s
speeches, and x; denotes the processed speech after applying D
to x (ie., x4 = D(x)). To measure the impact of D on x, we define
the quality change of x after applying the defense strategy as

AQq(x) =1 - S(Es(xq), Es(x)), 1)
where E is the speaker encoder. Es(x,;) and Eg(x) are the embed-
dings of x4 and x, respectively. S(Es(xg4), Es(x)) € [0,1] is the
similarity score between Es(xy) and Es(x). Obviously, the smaller
the AQ;(x), the less impact the defense strategy has on x. We use
W to denote the speech synthesis model. Please note that in this
paper we consider a black-box setting, where we do not know the
details about the speech synthesis model (e.g., model architecture
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and parameters), but we can obtain the model output (i.e., the syn-
thetic speech) given an input. Similarly, to measure the impact of
D on the synthetic speech, we define the quality change of the
synthetic speech after applying the defense strategy as

AQj(x) = S(Es(W(x)), e5) = S(Es (W (xq)), es), @

where W (x) and ‘W (x,) denote the generated synthetic speeches
based on x and x4, respectively. e is the speaker’s average voice
embedding, which is derived based on the speaker’s real speech
samples. S(Eg(‘W(x)), es) represents the similarity score between
the embedding of the generated synthetic sample and es. Here es is
used to measure the quality of the synthetic speech. The larger the
S(Es(‘W(x)), es), the better the synthetic speech. AQj(x) reflects
the change of the above similarity score after applying the defense
strategy. Our goal here is to find a defense strategy D that can maxi-
mize AQp(x) while guaranteeing that AQj(x) has little impact on
the usability of x in benign environments.

4 METHODOLOGY

4.1 Defense via Frequency Modification

To protect the target’s voice from speech synthesis attacks, we
propose to modify the target’s speeches in the frequency domain
before publishing them or sending them to others. Our investigation
shows that the speech signal contains some specific frequencies on
which the modification can significantly degrade the performance of
speech synthesis models but has little impact on human perception.
The basic idea of our proposed defense scheme is to identify these
specific frequencies and modify the signal on these frequencies. In
this paper, we consider three types of modification methods: Zero
Mask, Adaptive Noise Mask (AN-Mask), and Gaussian Blur Mask
(GB-Mask).

Zero Mask. This method is intuitive and it aims to mask some
frequencies of a target speech signal by setting their amplitudes to
0. Suppose x € RMXT s the mel spectrogram of a speech sample
produced by the target speaker, where M refers to the dimension
of the mel spectrogram in the frequency domain, and the T refers
to the dimension in the time domain. We denote such modification
method as

Mz (x,F) = {x|a} =0,Yf e Fand Vt € [0, T]}, 3)

t

f

where F is a set of frequencies that are chosen to modify for x. a
is the amplitude of the frequency f at time t.

Adaptive Noise Mask (AN-Mask). In this method, we perturb
the speech sample by adding some noises to the amplitudes of the
chosen frequencies. Specifically, we denote this method as

Muan(x,F) = {x|a} = a} +C(n(-)),Vf e Fand Vt € [0,T]},

4
where 7(+) is a noise generation function (e.g., Gaussian noise and
Laplace noise), and C(-) refers to the clipping function that con-
strains the perturbation. To ensure the perturbation remains subtle,
we constrain the noise using a constant € and limit the perturbation
to a valid range.

Gaussian Blur Mask (GB-Mask). The third type of modifica-
tion method is based on Gaussian blur, which is a noise reduction
low-pass filter that is widely used in image processing. The intu-
ition behind this method is to filter some details of the target speech
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signal that may help speech synthesis models capture the speaker’s
voice characters. Specifically, the Gaussian blur smooths speech
signals by convolving them with a Gaussian kernel. The Gaussian
function for constructing the kernel can be expressed as

2,52

G(p.q) = gge” 0, (%)

2ma?

where p and g are the distances to the center of the kernel in the
horizontal and vertical axis, respectively. Similar to the aforemen-
tioned methods, we simplify the process of applying GB-Mask to x
as:

Mgp(x,F) = {x|a} = ¢(a’, G),Yf € Fand Vt € [0,T]}, (6)

where the ¢ (-, -) refers to the mapping function that converts the
original amplitude a; to a new value based on the given Gaussian

function G.

Figure 4 shows the spectrogram of a speech sample after applying
the above three types of modifications to different frequency bands.
We can see that different modifications have different impacts on
the speech signal, and they can obviously change the pattern of the
signal.

To demonstrate the effectiveness of the above modification meth-
ods on defending against the speech synthesis attack, we next
conduct a case study that aims to answer the following three key
questions.

(1) Are the above modification methods effective for different
speech synthesis models?

(2) Do the three types of modification methods have different
defense effectiveness for a given speech synthesis model?

(3) Does the selection of frequency bands affect the defense
effectiveness?

In this case study, we consider three widely used speech synthe-
sis models: Chou’s model [22], AutoVC [52], and SV2TTS [36]. The
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is used for speech synthesis.

first two models are used for VC, and the third one is used for TTS. In
addition, we use the VCTK dataset [59] to study the effectiveness of
different modification methods. This dataset contains the speeches
of 109 English speakers. For each speech sample x, we uniformly
partition it into 16 blocks in the frequency domain. As shown in
Figure 5, the frequency band that combines two continuous blocks
is called a frequency window. Please note that the last frequency
window contains only one block. For each frequency window, we
use the aforementioned three modification methods to modify it
and feed the modified sample into each of the three adopted speech
synthesis models. Here we take each of the aforementioned mod-
ification methods as a defense strategy (i.e., D) and modify one
frequency window at a time. Then, we evaluate the quality changes
of sample x and the generated synthetic speech (i.e., AQ (x) and
AQj(x)), respectively. The similarity score between different em-
beddings in this case study is calculated based on cosine similarity
function with a well-known speaker encoder, Resemblyzer [1]. For
example, if applying Zero-Mask method to a specific frequency
window significantly degrades the synthetic speech quality while
the speech sample remains nearly unaltered for human perception,
we can infer that Zero Mask is effective on defending against the
speech synthesis attack. For a given speech synthesis model, we
say a modification method M € { Mz, Man, Mg} is effective on
frequency window w; if and only if the following two inequalities
are satisfied.

AQI(.X‘) > 11, (7)

®
where 71 and 7 are two thresholds that imply a noticeable quality
decrease on the synthetic speech with an acceptable distortion on
the original sample. The parameters in the case study can be found
in Section 8.1 of the Appendix.

To quantitatively analyze the effectiveness of the aforementioned
modification methods, we further define the effective rate of a given
modification method M on a specific frequency window w; as

AQu(x) < 1,

©)

where N is the total number of considered speech samples (1000 in
this case study). n§ equals to 1 if Eq. (7) and Eq. (8) are satisfied after
applying M to frequency window w; of the j-th sample, otherwise
n;'. equals to 0.

s

N i
M Xjmi
i N
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Figure 6a shows the average effective rates of the three modifica-
tion methods over all frequency windows. We can observe that the
modification methods can be effective in defending against different
speech synthesis models, but they have different effective rates for
every speech synthesis model. For example, Zero Mask can be very
effective on Chou’s model while the effective rates of AN-Mask
and GB-Mask are very low on this model. Figure 6b, Figure 6c,
and Figure 6d report the effective rates of the considered modifica-
tion methods on different frequency windows when Chou’s model,
AutoVC, and SV2TTS are used for speech synthesis, respectively.
These figures show that the selection of the frequency bands plays
an important role in defending against the speech synthesis attack.
The aforementioned modification methods can be very effective on
some specific frequency bands.

In summary, different modification methods have different de-
fense effectiveness not only on a specific speech synthesis model
but also on a specific frequency band. In addition, a specific modifi-
cation method can behave differently on different speech synthesis
models or on different frequency bands. These findings indicate that
it is necessary to identify the most important frequency bands and
derive the optimal combination of different modification methods
to maximize the possibility of achieving the defense goal.

4.2 The Optimal Defense Strategy

Next we discuss how to derive an optimal defense strategy to pro-
tect the target speaker’s voice from speech synthesis attacks. Recall
that our goal in this paper is to maximize the quality change of the
synthetic speech after applying the defense strategy while guar-
anteeing that the processed speech sample can still be used for its
normal purposes. We formulate the problem of finding the optimal
defense strategy as the following optimization problem.

max AQp(x)
o (10)
st AQu(x) < 1y,

where x is a speech sample of the target speaker, and 7 is a cus-
tomized threshold that reflects how much the quality change (dis-
tortion) on x the target speaker can accept. In practice, 7; can be
selected based on the variance observed in the target speaker’s
voice across different sentences. The method used to select 7; in
our experiments is discussed in Section 5.3.
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Suppose sample x is uniformly partitioned into B blocks in
the frequency domain, and two consecutive blocks form a fre-
quency window (as shown in Figure 5). We represent the de-
fense strategy D as a sequence that contains a series of pairs, i.e.,
D = {(b;, M,')}le, where b; € [1,B] is the block number, and
M € {Mz, Msn, Mgg} is one of the modification methods in-
troduced in Section 4.1. P is the number of pairs in the sequence.
Given a specific speech synthesis model, the defense strategy D
provides a guidance on how to process the target speaker’s speeches
so that the attacker cannot use them to generate synthetic speeches
with high quality. Specifically, before uploading x to public social
media platforms or sending it to others, the target speaker can
process x by modifying the frequency blocks in sequence D using
corresponding modification methods.

Since the selection of the modification method for each frequency
block is not a continuous process, it is difficult to directly use the
gradient-based method to solve the optimization problem in Eq. (10).
To address this challenge, we develop an effective solution based
on iterative search. The basic idea of this solution is to iteratively
search a pair (wj, M;) that can maximize AQy(x) while guarantee-
ing that AQg(x) is less than threshold 7. wj is a frequency window
as shown in Figure 5. M; is one of the aforementioned modifica-
tion methods, which is used to modify sample x within frequency
window w;. The reason why we use the frequency window instead
of the frequency block during the iterative search is that we want
to search some overlapped areas to enhance the search robustness
while two consecutive frequency blocks are independent.

To measure the effect of a pair (w;, M;) in the t-th iteration, we
introduce a metric called frequency sensitivity that is defined as

o = AQ!(x)-AQ; ! (x)
7 AQL(x)-AQ T (x)’

(11)

where AQIt (x) and AQ é(x) are calculated after taking into account
(wj, M;) in the t-th iteration. s§ reflects how much (wj, M;) can
change the values of AQ; (x) and AQ; (x) compared with that in
the (t — 1)-th iteration. The larger the value of s§, the better the

pair (wj, M;). In each iteration, we apply different modification
methods to each of the frequency windows that are not selected

399

in previous iterations and calculate the corresponding frequency
sensitivities. Then, we select the pair with the largest frequency
sensitivity and add the corresponding frequency block and modi-
fication method pairs to sequence D. For example, if (wj, M;) is
selected in iteration ¢, the pairs (b;, M;) and (bj41, M;) will be
added to sequence D if w; is not the last frequency window. If w;
is the last frequency window, (b, M) will be added to sequence
D. The iteration search will stop if AQ; (x) - AQ;_l(x) < 0or
AQ;(x) > 4.

Figure 7 presents an example of our proposed solution. Here
we divide the sample into six frequency blocks, which form 6 fre-
quency windows. Both AQ? (x) and AQZ (x) are set to zero in the
initial state (i.e., iteration 0). In the first iteration, we scan the
frequency window in a specific order, for instance, from the bot-
tom to the top, calculating the frequency sensitivities for all pos-
sible (wj, M;). There are a total of 6 X 3 sensitivities generated
in this iteration. We then compare these values and identify the
(wj, M;) that results in the largest frequency sensitivity. For in-
stance, (w3, M) has the largest frequency sensitivity (s; =10), so
we add (b3, Mz) and (by, Mz) to D. The symbol “-” in the exam-
ple denotes a frequency window that has already been masked or
where the sample distortion exceeds 7; with that pair, and it will
not be selected. Using the sample generated in the first iteration,
we repeat the process in the second iteration and find 55:5 with
AN-Mask. Then, we add (bg, Man) to D. In the third iteration, we
find that the sample distortion with any pair exceeds 7, triggering
the stop condition. In this case, the final defense strategy O would
be {(b3, Mz), (by, Mz), (bs, MaN)}.

Since using a fixed threshold may cause a considerable variance
of sample distortion, in our implementation, we increase the sta-
bility of the defense sample generation by flexibly controlling the
sample distortion into the range of [r; — p, 74+ p], where parameter
p has a small value. If the sample distortion does not fall into that
range when the search stops based on the above stopping condi-
tions, we can further mask half area of the block in the last iteration
based on binary search until the requirement is satisfied or reaches
the last split.
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Although the above solution can effectively derive an optimal
defense strategy, it has high complexity because it needs to iter-
atively search all frequency windows, even some windows that
cannot benefit the defense according to the results in previous it-
erations. To make the solution more efficient, we can utilize the
Tree-structured Parzen Estimator (TPE) [17], a widely-used algo-
rithm for hyperparameter optimization. The TPE algorithm is an
iterative process that uses the historical information of the evalu-
ated hyperparameters to construct a probabilistic model, guiding
the selection of the next hyperparameter set to optimize a given ob-
jective function. By taking historical information into account, TPE
usually requires fewer function evaluations (trails) than traditional
grid search methods, yet delivers comparable results. In this paper,
we consider the pair consisting of the frequency window index
and the modification method as the hyperparameters to optimize.
The frequency sensitivity (i.e., st) serves as the predefined objec-
tive function. Based on the TPE algorithm, we first sample a few
random configurations of the hyperparameters and evaluate the
objective function. Then, we split the results into more successful
and less successful based on a threshold (e.g., the median of the
objective values). Next, we fit a Gaussian Mixture Model (GMM)
to the configurations of each group and propose a new configura-
tion of the hyperparameters based on the ratio of the two GMM:s.
After proposing the new configuration, we evaluate the objective
function and update the above GMMs. The aforementioned steps
will continue until a stopping criterion is met. This procedure will
guide the search towards regions of the configuration space that
are more likely to yield good results (i.e., larger values of s;.) based
on the GMMs’ understanding of the observed data.

4.3

In the above section, we mainly discuss how to derive the optimal
defense strategy for a single speech sample. To defend against the
speech synthesis attack, the speaker can use the above algorithm
to derive an optimal defense strategy for each of his or her speech
samples, and then modify each sample based on the corresponding
defense strategy before uploading it to social media platforms or
sending it to others. However, in some cases, a speaker needs to
send instant audio messages to others, and the above algorithm
is still not efficient enough. To address this challenge, we further
propose to derive a speaker-level defense strategy that is general
enough to be directly applied to any speech of the speaker.

To derive the speaker-level defense strategy, we first collect K
speech samples of the speaker. Then, we apply the above algorithm
to each sample k and derive the corresponding optimal defense

strategy (denoted as sequence Dy). Next we combine the K se-

quences and derive a new sequence D’ = {(b;, M;, mi)}?:p where

m; is the total times that (b;, M;) appears in the derived sequences
for all K samples. We then rank the pairs in D’ based on descending
order of m;. Please note that the derivation of 9’ can be conducted
offline. After a speaker obtains his or her defense strategy D’, the
speaker can directly apply the ranked D’ to process an arbitrary
speech sample. Specifically, the speaker first modifies the sample
based on the first pair in the ranked 9’ and then modifies it using
the following pairs in order until the stopping condition is satisfied.
Here the stopping condition is the same as that in Section 4.2.

Speaker-level Defense
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5 PERFORMANCE EVALUATION
5.1 Speech Synthesis Models

We evaluate our defense schemes under a realistic and high-risk
scenario where the attacker uses zero-shot style speech synthesis
models to clone unseen target speakers’ voices. Specifically, we
chose two VC models, Chou’s model [22] and AutoVC [52], and
one TTS model, SV2TTS [36], as they have been widely used and
demonstrated strong generalization to unseen speakers. They all
share the general VC or TTS frameworks introduced in Section 2.

Chou’s model. This model employs adaptive instance normal-
ization to achieve the goal of generating the voice of unseen speak-
ers. It utilizes an encoder-decoder structure. The speaker encoder
takes a 512-dim mel spectrogram as input and generates a 128-dim
speaker embedding as the representation of the target speaker’s
speech. The decoder takes the content embedding extracted from
the content module and the speaker embedding as inputs to output
a synthesized 512-dim mel spectrogram. To recover the waveform
from the synthesized spectrogram, Chou’s model leverages Griffin-
Lim [28] as the vocoder. In this paper, we adopted the same pre-
trained model used in the official implementation of Attack-VC [4].

AutoVC. AutoVC also utilizes an encoder-decoder structure. The
author design an encoder bottleneck to match unseen speakers’
distribution. The speaker encoder adapts a pre-trained d-vector
using the generalized end-to-end (GEZ2E) loss [61] to generate a 256-
dim speaker embedding, with an 80-dim mel spectrogram as input.
The AutoVC model used in this paper is trained on the VoxCeleb1
[46] and LibriSpeech datasets [49].

SV2TTS. SV2TTS is a text-dependent TTS model that carries
out speech synthesis in three stages. First, it uses an LSTM speaker
encoder to capture the speaker’s voice characteristics. Then, it
applies Tatocron 2 [66] for spectrogram synthesis, and finally, it
employs the WaveNet Vocoder [48] for waveform generation. The
speaker encoder in this model takes a 40-dim mel spectrogram as the
input and generates a 256-dim speaker embedding. Here we adopt
the public implementation of this model [34], where the speaker
encoder is trained on VoxCeleb1/2 [46] and LibriSpeech [49], and
the synthesis network Tatocron 2 is trained on LibriSpeech. In our
implementation of SV2TTS, we adopt one of ten phrases of normal
conversation as text input for synthesizing each speech, with detail
listed in the Section 8.2 of the Appendix.

5.2 Dataset and Baselines

We conduct our experiments using CSTR VCTK corpus [59], which
contains 109 speakers with different genders and accents. The sam-
ples are collected by reading short newspaper phrases, Rainbow
passages [25], and elicitation paragraphs.

In our experiments, we consider the following two baselines.

o Raw.In this baseline, we do not consider any defense scheme.
The attacker uses the raw speech samples of the target
speaker to generate synthetic speeches. We follow the same
baseline implementation as described in [31, 67].

e Attack-VC. Attack-VC [31] is the only method in the lit-
erature that studies the same problem as ours. Attack-VC
achieves the defense goal by adding carefully designed noise
to the speech samples before uploading them to social media
platforms and sending them to others.
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Table 1: Attack success rate (ASR) on Resemblyzer (%).

Chou’s
Attack-VC  SampleMask SpeakerMask Attack-VC
7q = 0.06 69.7 18.2 38.8 34.3
Tq4 =0.12 46.3 9.2 17.1 29.3
7q =0.18 30.3 0.9 9.4 17.2

AutoVC SV2TTS
SampleMask SpeakerMask SampleMask SpeakerMask
19.1 24.8 19.4 49.0
13.0 15.1 8.3 29.9
6.5 10.9 3.5 13.5

Please note that our proposed defense scheme for single speech
samples in Section 4.2 is denoted as SampleMask, and the pro-
posed speaker-level defense scheme in Section 4.3 is denoted as
SpeakerMask.

5.3 Experimental Setup

Speaker encoder E; and embedding es. To calculate the quality
changes described in Eq. (1) and Eq. (2), we use the LSTM speaker
encoder trained by Resembylzer [1] as Es. This encoder is widely
adopted and it shows a remarkable ability to distinguish different
speakers. For a speaker’s average voice embedding es, we calculate
it with the above speaker encoder using the speaker’s 10 speech
samples that are randomly selected from the VCTK dataset. The
threshold 7. This threshold reflects how much the quality change
on the speech sample the target speaker can accept after applying
the defense strategy. In our experiments, we determine 7; based
on the following method. For each speaker in the VCTK dataset,
we randomly select 10 speech samples and calculate the similarity
score between the embedding of each sample and the average voice
embedding es. Here cosine similarity is used to calculate the simi-
larity score. Then, we can derive an average similarity score over
the randomly selected 10 speech samples for each speaker. Finally,
we calculate the average similarity score over the 109 speakers in
the dataset and its value is 0.88, based on which we can derive that
the average difference between a speaker’s speech embeddings and
his or her e is 0.12. We set 7; to 0.12 in our experiments. Since
all the speech samples in the VCTK dataset are collected without
any modification, the above difference reflects the variance of a
speaker’s voice when he or she say different sentences.

Other parameters. In the paper, we partition the spectrogram
into 16 frequency blocks. We generate standard Gaussian noise for
the AN-Mask and clip the noise with a magnitude constraint of
0.1. We use (11,11) as kernel size and set the standard deviation to
1.5 for generating GB-Mask. We apply the modification on a 512-
dim mel spectrogram in all experiments, using the same parameter
configuration as in [31]. The relax bound p is set to 0.02.

Ethics. To study the performance of our proposed defense
schemes on real-world SR systems, we recruit some English speak-
ers and collect some of their voice recordings. We also conduct
a user study with human participants to assess the impact of our
defense on human perception. These studies have received approval
from the IRB. The details of them can be found in Section 5.4 and
Section 5.5.

5.4 Experimental Results

We first use real-world SR systems to evaluate the performance of
the proposed defense schemes. Specifically, we study whether the
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synthetic speeches generated by the attacker can fool SR systems or
let SR systems believe that the synthetic speech is from the target
speaker. We use the attack success rate (ASR) as the evaluation
metric, which is defined as the percentage of the synthetic speeches
that successfully fool a specific SR system. The lower the ASR, the
better the defense scheme. In our paper, we consider four state-of-
the-art SR systems: Resemblyzer [1], Microsoft Azure [7], Amazon
Alexa [5], and WeChat [11].

Resemblyzer. Resemblyzer is an open-source speaker encoder
that is widely adopted for SR. It enrolls each speaker with his
or her real speeches and generates an embedding to represent
the speaker’s voice identity. To recognize a speaker, Resemblyzer
calculates the embedding of the input speech and compare it with
the enrolled embeddings, using cosine similarity as a metric. Then
a threshold is used to determine whether two embeddings belong
to the same speaker.

For each speaker from VCTK dataset, we randomly select their
100 speech samples and derive 100 synthetic speeches based on
the selected samples. Then, we calculate the ASR of all synthetic
speeches. Table 1 reports the ASRs of the different speech synthe-
sis models when different defense schemes are applied. Here we
consider three cases where the values of 7; are set to 0.06, 0.12, and
0.18, respectively. Since parameter 75 does not have impact on Raw,
we do not show the results of Raw in the table. With Raw, the ASRs
of Chou’s model, AutoVC, and SV2TTS are 84.1%, 52.4%, and 57.1%,
respectively. For Attack-VC, the added noise to a speech sample
is determined by parameter €, which is a constraint making the
perturbation subtle. Here we assign appropriate values to € in the
above three scenarios so that Attack-VC and our proposed schemes
can generate similar distortion on the speech sample when they
are applied to the same case. The results in Table 1 show that our
proposed defense schemes perform much better than Attack-VC in
all cases. For example, when the value of 7; is 0.12, SampleMask
can reduce the ASR of Chou’s model from 84.1% to 9.2% while
Attack-VC can only reduce that to 46.3%. When being applied to
unseen speech samples, our scheme SpeakerMask can reduce the
ASR of Chou’s model from 84.1% to 17.1%. The results demonstrate
that our scheme can still achieve good performance even though
the test sample is not involved in the optimization, indicating the
good effectiveness and generalizability of our defense. Although
the authors in [31] do not evaluate the performance of Attack-VC
on SV2TTS, we explore the possibility of using Attack-VC to de-
fend against SV2TTS. However, we find that all defense samples
are beyond human perception. So we only show the results of our
schemes on SV2TTS in Table 1.
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Microsoft Azure. Azure is a real-world, open-API SR sys-
tem that has been officially adopted by many international en-
trepreneurs. Users can register their voice profiles using approx-
imately 20-50 seconds of authentic speech. For an input speech
sample, Azure’s backend can clearly display a message indicating
whether the sample is accepted or rejected. An attack is consid-
ered successful against Azure if the backend indicates that the test
speech has been accepted. In this experiment, we still consider
the 109 speakers in the VCTK dataset and enroll them with their
speeches. We feed the same 10900 synthetic speeches generated
in the experiment for Resemblyzer into Azure. Here we only eval-
uate our speaker-level defense scheme SpeakerMask and set the
value of 74 to 0.12. Please note that the derived defense strategy for
each speaker is a combination of the three modification methods
discussed in Section 4.1. The results are shown in Figure 8. We
can observe that the speech synthesis models still can easily fool
Azure when there is no defense, but they have lower ASRs com-
pared with Resemblyzer. However, our proposed defense scheme
SpeakerMask can significantly reduce the ASR of different speech
synthesis models and outperform Attack-VC on both Chou’s model
and AutoVC.

30
HE Raw

B Attack-VC
[ SpeakerMask

N
o

ASR (%)

Chou's AutoVC SV2TTS
Speech synthesis models

Figure 8: Attack success rate (ASR) on Microsoft Azure.

In addition, we study the effect of our proposed defense on the
usability of speakers’ speeches. Specifically, we feed the modified
speeches of the 109 speakers into both Resemblyzer and Azure,
and evaluate the acceptance rate (ACR), which is defined as the
percentage of the modified speeches that are successfully recog-
nized by the SR system. The results are shown in Table 2. Here
we modify speeches using the defense strategies derived based on
Chou’s model, AutoVC, and SV2TTS, respectively. Please note that
the ACRs of Resemblyzer and Azure on unmodified speeches are
100% and 94.1%, respectively. We can observe that the two SR sys-
tems exhibit high ACRs when using the modified speeches. This
indicates that speeches processed by our proposed defense retain
high usability.

Amazon Alexa. As a popular virtual assistant embedded in Ama-
zon’s smart speaker, Alexa has been widely used for customizing
user interactions and control access to sensitive apps like email and
calendar [5]. Alexa does not provide an API for our evaluation, and
its speaker verification mechanism is black-box for users. Alexa al-
lows users to enroll their voice by uttering simple phrases, utilizing
a text-dependent speaker verification system accessible on mobile
apps or various IoT devices [5]. It differs from the above SR systems,
as Alexa does not explicitly indicate if an attack is successful. In
this experiment, we follow the design in [67] and deem an attack
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Table 2: Acceptance Rate (ACR) of modified speeches (%).

Chou’s AutoVC SV2TTS

Resemblyzer 100 100 100
Azure 89.9 84.7 90.1

successful if Alexa responds to the synthetic speech the same way
it responds to a non-synthesized version of the speech. We recruit
12 English speaks (7 males/5 females) and gather a small collection
of their voice recordings as the target speeches to synthesize test
commands. Each participant is asked to read 20 phrases from the
Rainbow Passage, a resource widely utilized in linguistic studies.
The detailed phrases are listed in Section 8.2 of the Appendix. 8
participants record their speeches using a voice memo app on an
iPhone 11+, and 4 participants use MacBook Pros. The distance
between each participant and the microphone is 6 inches. Here we
still evaluate our speaker-level defense scheme SpeakerMask. For
each speaker, we use the first ten phrases to generate the defense
strategy and then apply it to the remaining phrases. The modified
speeches are then fed into different speech synthesis models to
generate synthetic commands.

As shown in Table 3, for each participant, we test 7 commands
that may disclose users’ private information if the attack succeeds.
The results in Table 3 show that the Chou’s model achieves an
overall ASR of 48.8% without any defense scheme. After we ap-
ply Attack-VC and SpeakerMask, the ASR of the Chou’s model is
decreased to 36.9% and 8.3%, respectively. In this experiment, we
only consider the scenario where 7; = 0.12. For AutoVC, its overall
ASR without any defense is 21.4%. However, after applying the de-
fense schemes, the ASR is increased to 23.8% with Attack-VC while
SpeakerMask can reduce it to 1.2%. These results demonstrate the
good performance of our proposed defense scheme in defending
against speech synthesis attacks based on VC models. When the
attacker uses SV2TTS to perform the attack, our defense scheme
SpeakerMask can reduce the overall ASR from 69.0% to 52.4%. We
can observe that the performance of SpeakerMask on SV2TTS is
not as good as that on the above two VC models. The reason may
be that Alexa is more sensitive to the content of the command
than voice identity, and SV2TTS can generate more understandable
content compared with the above VC models.

WeChat. WeChat is a popular chatting and payment App. It
employs a “voice lock” to be an alternative option for entering the
password. Users can log in to their accounts by speaking a system-
assigned 8-digit number, with a maximum of six daily attempts. If
a speech matches the enrolled voice of a speaker and the assigned
number, the system will allow the speaker to log in. In this experi-
ment, we also recruit 12 English speakers (7 males/5 females) as the
users and collect 20 voice recordings for each user using the same
method discussed in the experiment for Alexa. We still use the first
10 recordings of each user to generate the speaker-lever defense
scheme and then test the scheme on the remaining 10 samples of
each user. Our experiment synthesizes six login numbers using
different source samples spoken by a same-gender speaker in two
VC models and the number text in SV2TTS. An attack is considered
successful if at least one attempt enables the user to log in with the
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Table 3: Attack success rate (ASR) on Amazon Alexa (%).

Commands Chou’s AutoVC SV2TTS
Raw  Attack-VC  SpeakerMask Raw  Attack-VC SpeakerMask Raw SpeakerMask
Hey Alexa add an event to my calendar for tomorrow at 5. 50.0 16.7 8.3 16.7 0.0 0.0 83.3 75.0
Hey Alexa check my email 41.7 25.0 0.0 25.0 33.3 0.0 41.7 41.7
Alexa say who is talking with you now 50.0 33.3 16.7 16.7 16.7 0.0 50.0 33.3
Alexa tell me what is on my calendar 66.7 75.0 16.7 33.3 41.7 8.3 91.7 66.7
Tell me what is on my calendar for this week 58.3 66.7 8.3 25.0 41.7 0.0 75.0 58.3
Alexa make an appointment with my doctor 50.0 41.7 8.3 33.3 25.0 0.0 83.3 50.0
Hey Alexa make a donation to the American Cancer Institute ~ 25.0 0.0 0.0 0.0 8.3 0.0 58.3 41.7
< Average across the above 7 commands > 48.8 36.9 8.3 214 23.8 1.2 69.0 52.4
Table 4: User study for real samples. Table 5: User study for defense samples.
Answers Yes (%) Unsure (%) No (%) Chou’s AutovVC SV2TTS
Real A/Real A 50.9 142 19 Attack-VC  SpeakerMask  Attack-VC  SpeakerMask  SpeakerMask
Real A/Real B 6.2 115 823 Yes (%) 70.9 71.5 70.4 69.9 73.7
Unsure (%) 13.1 12.8 16.6 13.5 15.4
No (%) 16.0 15.7 13.0 16.6 10.9

synthetic commands. Our results show that none of the users can
log in with the synthetic commands generated by Chou’s model
and AutoVC. So there is no need to perform the defense on the two
VC models. However, 5 of 12 (ASR = 41.6%) users can successfully
log in to their accounts with the synthetic speeches generated by
SV2TTS where there is no defense. After applying our speaker-level
defense SpeakerMask (z;7 = 0.12), only one user can log in to the
account, i.e., the ASR is decreased from 41.6% to 8.3%, which further
demonstrates the effectiveness of our proposed scheme.

5.5 User Study

Next, we conduct a user study to evaluate the impact of our defense
on human perception. Specifically, we aim to answer two questions:
(1) Can the proposed defense affect the normal usability of a speaker’s
speeches? (2) Can the synthetic speeches generated by speech syn-
thesis attacks still fool many humans after performing our proposed
defense? In this study, we recruit 80 self-identified English-speaking
participants from a public crowdsourcing platform: Amazon Me-
chanical Turk (Mturk) [8], which has been widely used in research
and business [21]. Mturk accommodates participants from various
age groups and genders, and all participants were 18 years old or
older. We ask the participants to complete an online survey, which
is designed to take an average of 5 minutes to complete, and each
participant receives a compensation of 1 dollar. We also requested
participants to input a predefined task code to eliminate potential
bots.

Survey details. In the online survey, we provide 16 audio pairs to
each participant. The participants are asked to listen to each audio
pair first and then answer the question: Are the two audio samples
from the same speaker? The candidate answers are “Yes”, “Unsure”,
and “No”. Each audio pair is one of the following combinations: (1)
Real A/Real A (two real speech samples from the same speaker); (2)
Real A/Real B (two real speech samples from different speakers);
(3) Real A/Defense A (one real speech sample from a speaker and
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its corresponding defense sample generated by a defense scheme);
(4) Real A/Fake A (one real speech sample from a speaker and
its corresponding synthetic speech sample generated by a speech
synthesis model).

Results. The benchmark in this study is users’ response to “Real
A/Real A” and “Real A/Real B”, which can reflect users’ ability to
distinguish different speakers. As shown in Table 4, 80.9% users
choose “Yes” for two samples from the same speaker (Real A/Real
A), and 82.3% users choose “No” for two samples from different
speakers (Real A/Real B).

Can the proposed defense affect the normal usability of a
speaker’s speeches? Table 5 shows the answers for “Real A/De-
fense A”. The speech samples here are generated by Attack-VC
and SpeakerMask when the speech synthesis models are Chou’s
model, AutoVC, and SV2TTS, respectively. We can observe that
both Attack-VC and our proposed defense can slightly affect the
usability of speeches, but the effects are acceptable. For instance,
when the attack model is Chou’s model and 7; = 0.12, 70.9% and
71.5% of the users still choose “Yes” for the defense samples gener-
ated by Attack-VC and SpeakerMask, respectively. These results are
10.0% and 9.4% lower than that for unprocessed speeches (80.9%),
which demonstrates that our proposed defense has little impact on
the normal usability of a speaker’s speeches.

Can the synthetic speeches generated by speech synthesis
attacks still fool many humans after performing our proposed
defense? The answers for “Real A/Fake A” are shown in Figure 9, in
which 20.4%, 36.2%, and 27.8% of the users choose “Yes” for the syn-
thetic speeches generated by Chou’s model, AutoVC, and SV2TTS,
respectively, when there is not any defense (Raw). Although all
participants are told that fake speeches may exist before filling out
the survey, many of them are still fooled by the synthetic speeches.
These results again demonstrate the threats of speech synthesis
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Figure 9: User study for synthetic samples.

attacks. After performing the defense, both Attack-VC and Speak-
erMask can reduce the chance that the participants are fooled, and
many participants choose “Unsure” and “No” when being asked
whether the two audio sample are from the same speaker. The re-
sults also show that our scheme can outperform Attack-VC in all
cases. There are fewer participants believing that the real speech
sample and the corresponding synthetic speech are from the same
speaker after applying our proposed defense. For example, when
AutoVC is adopted as the attack model, the participants who believe
the target speech and the corresponding synthetic speech are from
the same speaker is decreased from 36.2% to 4.5%.

5.6 Transferability

In this experiment, we study the transferability of our proposed
defense. Specifically, we study whether the derived defense strategy
based on a specific speech synthesis model can be applied to defend
against other synthesis models. Here we still take Chou’s model,
AutoVC, and SV2TTS as the speech synthesis models, and use the
VCTK dataset for our study. We first generate defense samples
using SpeakerMask based on a specific speech synthesis model
and feed these defense samples into different speech synthesis
models to generate corresponding synthetic speeches. Then we use
Resemblyzer as a SR system to evaluate the attack performance. We
consider the case where 7; = 0.12, and the setting in this experiment
is similar to that in the experiment for Resemblyzer. The results
are shown in Table 6. The models in the first column are used for
deriving the defense samples, and the models in the first row are
used for generating synthetic speeches. We can observe that the
defense performance is slightly degraded when the strategy derived
based on a specific synthesis model is used to defend against other
synthesis models. However, the defense is still effective and the
ASRs are much lower than that without any defense scheme (the
ASRs of Chou’s model, AutoVC, and SV2TTS without any defense
are 84.1%, 52.4%, and 57.1%, respectively). These results demonstrate
that our proposed defense has good transferability. Even though a
speaker cannot know which speech synthesis model will be used by
the attacker, the speaker can still use the proposed defense scheme
to protect his or her voice.

5.7 Efficiency

The efficiency of generating defense samples is also an important
factor. In this experiment, we evaluate the average time it takes to
generate a defense sample using our speaker-level defense Speak-
erMask and Attack-VC (sample lengths are typically between 3-10
seconds) based on 1000 samples. The results are shown in Table 7.

404

ACSAC °23, December 04-08, 2023, Austin, TX, USA

Table 6: ASR for defense transferability (%).

Chou’s AutoVC SV2TTS

Chou’s 17.1 21.1 33.3
AutoVC 40.0 15.1 32.1
SV2TTS 42.4 25.6 29.9

Here we consider three cases where the values of 7; are set to
0.06, 0.12, and 0.18, respectively. We can observe that SpeakerMask
takes around only one second to generate a defense sample while
Attack-VC takes more than 30 seconds. The results show that our
speaker-level defense is efficient in processing speeches, and it
enables a speaker to send instant messages to others.

Table 7: Average time of generating a defense sample (s).

Chou’s AutoVC SV2TTS

;=006 09 1.0 1.2
;=012 11 13 1.4
74=018 13 15 2.0

Attack-VC 312 492 -

6 LIMITATIONS AND FUTURE WORK

In this paper, we consider speech synthesis models based on English
corpora, and our evaluation involves only English speakers. We
have not assessed the defense performance on other languages. Fur-
ther study on other languages will be our future work. In addition,
the voice samples mentioned in Section 5.4 were collected in indoor
settings. The experimental results demonstrate that our defense
is effective with natural indoor noise levels. In our future work,
we will further study the performance of the proposed schemes in
diverse settings with significant noise levels.

7 CONCLUSION

In this paper, we study how to protect a speaker’s voice from speech
synthesis attacks. We propose a novel defense scheme that can sig-
nificantly degrade the performance of existing speech synthesis
models by modifying the speaker’s speeches in the frequency do-
main. The modification in the proposed defense scheme has little
impact on the quality of speeches, and the modified speeches can
still be used for their normal purposes. To improve the efficiency
of the defense, we also propose a speaker-level scheme that can
produce a universal defense strategy for each speaker. Based on
this universal defense strategy, the speaker can efficiently process
any of his or her speeches. Extensive experiments are conducted on
real-world SR systems to evaluate the performance of the proposed
schemes. We also conduct a user study using a public crowdsourc-
ing platform to evaluate the impact of the proposed schemes on
human perception. The experimental results show that the speech
synthesis attack can be easily recognized by SR systems and humans
after applying our defense.
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8 APPENDIX
8.1 Other Experimental Settings

In the case study in Section 4.1 , we evaluate both Gaussian and
Laplace distribution noise, and they show similar effective rates.
We thus use Gaussian noise to generate AN-Mask for the remain-
ing experiments. To evaluate whether the proposed modification
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methods are effective on a frequency window, we set the value of
71 to 0.05. The values of 75 for Zero Mask, AN-Mask, and GB-Mask
are set to 0.12, 0.20, and 0.20, respectively.

In Section 5.4, we match the perturbation constraint € used in
Attack-VC with z; by generating enough (1000) defense samples
with different values of € and then calculating the average sample
distortion. Figure 10 shows the values of € and 7 that can generate
similar distortions on speech samples.

0.5
-2 Chou's
0.4 —— AutoVC

0.3 8
®

0.2

0.1

0.0

epsilon x 1072

Figure 10: The relationship between € and 7.

According to Figure 10, we match e = 0.03 with z7; = 0.06,
€=0.055 with 7; = 0.12, and €=0.075 with 7; = 0.18 for Chou’s
Model. For AutoVC, we match ¢ = 0.01 with 7; = 0.06, €=0.05 with
74 = 0.12, and €=0.13 with 7; = 0.18. We also study whether the
defense samples derived in Section 5.4 meet the matching require-
ment. Table 8 provides the average sample distortion in Section 5.4.
We can see that Attack-VC and SpeakerMask can generate similar
distortions based on the assigned values of €. Thus, the comparison
between Attack-VC and SpeakerMask is under a fair condition.

Table 8: Sample distortion.

Chou’s AutoVC
SpecMask SpecMask

SV2TTS
SpecMask

Attack-VC Attack-VC

7=0.06 0.06+0.02 0.06+001 0.08£0.03 0.06+001 0.06=£0.01
7=0.12 0.13+0.04 012+0.01 0.11+0.04 0.12+0.01 0.12+0.01
7=0.18 018+005 0.18+0.01 0.19+0.06 0.18+0.01 0.18+0.01

8.2 Phrases for Speech Synthesis

All participants involved in Section 5.4 are asked to read the
below rainbow passage containing 20 phrases. The first 10 phrases
are used for determining their personal defense strategies. To
demonstrate generalizability of our scheme, we apply the defense
strategy to the remaining 10 phrases. The following is the passage
read by them.

When the sunlight strikes raindrops in the air, they act as a prism
and form a rainbow. The rainbow is a division of white light into
many beautiful colors. These take the shape of a long round arch,
with its path high above, and its two ends apparently beyond the
horizon. There is , according to legend, a boiling pot of gold at one
end. People look, but no one ever finds it. When a man looks for
something beyond his reach, his friends say he is looking for the pot
of gold at the end of the rainbow. Throughout the centuries people
have explained the rainbow in various ways. Some have accepted it
as a miracle without physical explanation. To the Hebrews it was
a token that there would be no more universal floods. The Greeks
used to imagine that it was a sign from the gods to foretell war
or heavy rain. The Norsemen considered the rainbow as a bridge
over which the gods passed from earth to their home in the sky.
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Table 9: Phrases used for SV2TTS speech synthesis on Resemblyzer and Azure.

We control complexity by establishing new languages for describing a design,
each of which emphasizes particular aspects of the design and deemphasizes others.

An interpreter raises the machine to the level of the user program.

Everything should be made as simple as possible, and no simpler.

The great dividing line between success and failurecan be expressed in five words: "I did not have time."

When your enemy is making a very serious mistake,don’t be impolite and disturb him.

A charlatan makes obscure what is clear; a thinker makes clear what is obscure.

There are two ways of constructing a software design;

one way is to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated that there are noobvious deficiencies.

The three chief virtues of a programmer are: Laziness, Impatience and Hubris.

All non-trivial abstractions, to some degree, are leaky.

XML wasn’t designed to be edited by humans on a regular basis.

Others have tried to explain the phenomenon physically. Aristotle
thought that the rainbow was caused by reflection of the sun’s
rays by the rain. Since then physicists have found that it is not
reflection, but refraction by the raindrops which causes the rainbows.
Many complicated ideas about the rainbow have been formed. The
difference in the rainbow depends considerably upon the size of the
drops, and the width of the colored band increases as the size of
the drops increases. The actual primary rainbow observed is said
to be the effect of super-imposition of a number of bows. If the red
of the second bow falls upon the green of the first, the result is to
give a bow with an abnormally wide yellow band, since red and
green light when mixed form yellow. This is a very common type of
bow, one showing mainly red and yellow, with little or no green or blue.

For all speech synthesis in SV2TTS, we adopt the same 10 phrases
used in [67] for providing linguistic information, as is shown in
Table 9.

8.3 Analysis of the Defense Strategy

We also analyze which frequency-strategy pairs are the most ef-
fective (appear most often) in the derived speaker-level defense
strategies. Specifically, after deriving the defense strategies for the
speakers in the VCTK dataset, we count the number of each fre-
quency block and modification method pair’s occurrences. Then,
we calculate the appearance rate (percentage) of each pair and show
the top 6 pairs in Table 10.

We can see that Zero Mask is highly effective on Chou’s model.
AN-Mask and GB-Mask are both effective on AutoVC and SV2TTS.
In addition, most of the top pairs contain large block numbers,
which means modifying high frequencies (above 4000 Hz) can result
in better defense effects in most cases. Those high frequencies are
usually less perceptible to human beings.

8.4 Impact of Parameters in AN-Mask and
GB-Mask

We next study the impact of noise magnitude constraint (i.e., €) in
AN-Mask and the standard deviation (i.e., o) in GB-Mask on the
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Table 10: Top 6 pairs and their appearance rates (%).

Chou’s AutoVC SV2TTS
Rank Pair Rate Pair Rate Pair Rate
1 (issMz) 144 (bisMz) 137 (hieoMz) 67
2 (e Mz) 138  (biaMz) 101 (b, Mz) 6.5
3 (b1gMz) 116 (b3 Man) 99  (bissMan) 65
4 (bs;Mz) 102 (biz,Mz) 63 (b5, Mz) 59
5 b7 Mz) 96 (bizMan) 62 (bis, Man) 59
6 (b13,Mz) 84 (biuMgp) 61 (b3, MgB) 58
3100 (5100
[ —— £=0.05 S —— 0=1.0
9 80 —— £=0.1 9 80 —— o0=1.5
© 60| — £=1015 ® 60| — o0=20
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(a) Impact of € in AN-Mask (b) Impact of o in GB-Mask

Figure 11: Impact of parameters in AN-Mask and GB-Mask.

defense effect. Specifically, we conduct a case study with SV2TTS
and test the effective rate (defined in Section 4.1). The results in
Figure 11 indicate that a smaller noise magnitude constraint in
AN-Mask and a smaller standard deviation in GB-Mask typically
result in reduced effective rates. Conversely, larger values of these
parameters tend to increase the effective rates. However, higher
values of these parameters may introduce noticeable background
noise, potentially compromising the usability of the speech.

8.5 Visualization

We further provide some examples of the spectrogram generated
by SpeakerMask based on the three speech synthesis models. Here
We randomly select two speakers’ samples for demonstration. The
speaker-sample ID are shown in the following figures.
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Figure 12: Speaker-sample ID: p249-007 - Chou’ defense samples.
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Figure 13: Speaker-sample ID: p249-007 - AutoVC defense samples.
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Figure 14: Speaker-sample ID: p249-007 - SV2TTS defense samples.
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Figure 15: Speaker-sample ID: p275-360 - Chou’s defense samples.
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Figure 16: Speaker-sample ID: p275-360 - AutoVC defense samples.
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Figure 17: Speaker-sample ID: p275-360 - SV2TTS defense samples.
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