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Abstract

LiDAR (Light Detection and Ranging)-based object detection is a
cornerstone of autonomous vehicle perception systems. Modern
LiDAR perception relies heavily on deep neural networks (DNNs),
which enable accurate object detection by learning geometric fea-
tures from 3D point clouds. However, recent studies have shown
that these systems are vulnerable to object-based adversarial at-
tacks, where physical adversarial objects are strategically placed in
the environment to manipulate LiDAR point clouds and mislead
detection models. These attacks are practical, stealthy, and require
no specialized hardware, posing a serious threat to the safety and
reliability of AVs. Despite these risks, existing defense methods
suffer from significant limitations, including high computational
overhead, limited generalizability and effectiveness, and the in-
ability to operate in real time. In this paper, we propose the first
real-time defense mechanism against object-based LiDAR attacks in
autonomous driving. Our solution is both detection model-agnostic
and attack-agnostic, requiring no prior knowledge of the number,
shape, size, or placement of adversarial objects. Positioned between
the sensing and perception modules of the AV pipeline, the defense
processes LiDAR point clouds in real time and employs a novel gen-
erative model that enables efficient and effective identification and
removal of adversarial points from suspicious regions. Extensive
experiments in both simulated and real-world environments demon-
strate that our approach achieves high attack detection rates with
minimal latency. This work offers a practical and robust defense
solution to a growing security threat in autonomous driving.
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1 Introduction

Autonomous driving has recently garnered substantial attention,
driven by its potential to improve transportation safety, efficiency,
and accessibility [6, 12, 20-22, 27, 31, 34, 40]. Central to the percep-
tion capabilities of autonomous vehicles (AVs) is LIDAR, a sensor
technology that provides high-resolution, three-dimensional rep-
resentations of the surrounding environment [2, 3, 5, 11, 16, 37].
LiDAR-based object detection enables AVs to recognize critical ob-
stacles such as vehicles, pedestrians, and cyclists, making it a core
component of modern autonomous driving systems.

Recent advances in LiDAR object detection have been largely
driven by deep neural networks (DNNs), which have demonstrated
strong performance across a range of perception tasks. However,
despite their effectiveness, DNN-based detection models have been
shown to be susceptible to malicious attacks. A growing body of
research has uncovered various attack strategies capable of com-
promising LiDAR perception. Among these, object-based LiDAR
attacks [1, 8, 10, 28, 38, 46, 48, 49, 51] have drawn particular atten-
tion due to their high practicality, stealth, and effectiveness. These
attacks involve strategically placing adversarial objects, such as
3D-printed structures or common physical items, in the driving en-
vironment to introduce additional points into the LiDAR point cloud
and mislead the detection model into producing incorrect results.
For example, an attacker can hide a car parked on the road from
the LiDAR object detection system of an AV by placing common
objects (e.g., billboards) at some specific locations around the car. In
contrast to laser-based spoofing attacks [7, 9, 17, 18, 23, 32, 35, 36],
which mislead LiDAR perception by actively projecting laser beams
into the sensor, object-based attack methods do not require special-
ized equipment and are more feasible for real-world deployment,
making them a serious threat to the safety and reliability of au-
tonomous driving.

To counter object-based LiDAR attacks, several categories of de-
fense strategies have been proposed, including adversarial training,
multi-sensor fusion, and runtime LiDAR data analysis. However,
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existing approaches within these categories exhibit significant limi-
tations that hinder their effectiveness and deployment in real-world
autonomous driving scenarios.

Adversarial training [8, 28, 38, 46, 51] aims to improve the robust-
ness of LIDAR detection models by incorporating attack-generated
point clouds during training. While this can increase resilience
to known threats, it relies on prior knowledge of specific attack
types and struggles to generalize to diverse, unseen adversarial ob-
ject configurations, resulting in limited effectiveness in real-world
scenarios. Multi-sensor fusion [33, 46, 49] enhances perception ro-
bustness by integrating data from complementary sensors such
as cameras and radar to cross-validate LiDAR inputs. Although
this improves redundancy, it does not fundamentally address the
vulnerabilities of the LIDAR module and remains susceptible to
coordinated attacks targeting multiple modalities [8, 24, 50]. More
recently, a runtime defense approach has been proposed that moni-
tors incoming LiDAR data to identify suspicious point clusters and
employs a reinforcement learning-based search to remove potential
adversarial points [45]. While this method demonstrates strong
detection performance and adaptability, it incurs significant compu-
tational overhead, often requiring several seconds to process each
LiDAR frame, which limits its suitability for real-time autonomous
driving scenarios where rapid response is critical.

To date, no existing defense offers both high effectiveness and
real-time efficiency, despite the fact that AVs operate in time-
sensitive environments where even minor delays in threat detection
can result in catastrophic consequences. These limitations under-
score the urgent need for a real-time, generalizable, and practical
defense mechanism against object-based LiDAR attacks.

However, developing such a defense presents several key chal-
lenges. First, AVs may utilize a variety of LIDAR object detection
systems, each with different architectures and models. Therefore,
the defense must be sufficiently general to integrate seamlessly
with diverse detection pipelines. Second, attacks typically occur
while the vehicle is in motion and the distance between the AV and
the attack location is usually short (e.g., tens of meters), leaving a
narrow window for reaction. Any delay in attack identification or
mitigation can lead to unsafe maneuvers or collisions. Third, the
attack location is unpredictable, as adversaries may launch attacks
at arbitrary points along the road. Moreover, existing object-based
LiDAR attacks employ a wide range of adversarial object configu-
rations, varying in number, size, shape, and placement. In practice,
defenders lack prior knowledge of these parameters, and the de-
fense must be robust against such variability to remain effective
under diverse and unknown attack strategies.

To address the above challenges, we propose a novel real-time
defense mechanism against object-based LiDAR attacks in au-
tonomous driving. The proposed solution is both detection model-
agnostic and attack-agnostic, making it compatible with a wide
range of LiDAR perception systems and effective against diverse
attack strategies. It is designed for seamless integration into exist-
ing autonomous vehicle software stacks without requiring signifi-
cant modifications to system components. Positioned between the
sensing and perception modules in the AV pipeline, the defense
processes incoming LiDAR point clouds in real time before they
are passed to the downstream perception model. At the core of our
mechanism is a generative model that enables the identification
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and removal of LiDAR points introduced by adversarial objects.
This results in a clean, attack-free point cloud that enhances the
robustness of subsequent object detection. We validate the effec-
tiveness of our approach through comprehensive evaluations in
both simulated and real-world settings, demonstrating strong de-
fense performance, high generalizability, and low-latency operation
suitable for real-time deployment.

Contributions. Our contributions are summarized as follows:

e We present, to the best of our knowledge, the first real-
time defense mechanism against object-based LiDAR at-
tacks, specifically designed for practical deployment in au-
tonomous driving systems.

e We introduce a novel generative model that enables the

efficient and accurate identification and removal of LIDAR

points introduced by adversarial objects.

Our method is both detection model-agnostic and attack-

agnostic, requiring no prior assumptions about the number,

shape, or placement of adversarial objects.

e We conduct extensive evaluations in both simulated and
real-world environments, demonstrating that our defense
significantly mitigates object-based LiDAR attacks with min-
imal runtime overhead.

2 Background and Related Work

2.1 LiDAR Object Detection in Autonomous
Driving

LiDAR is a core sensing modality in autonomous driving, providing
high-resolution, three-dimensional information about the surround-
ing environment. A LiDAR sensor works by emitting laser pulses in
multiple directions and measuring the time it takes for the signals to
bounce back after hitting nearby objects. This time-of-flight data is
converted into a set of 3D spatial coordinates, collectively forming
a point cloud. Each point in this cloud represents a precise location
in space, typically defined by its (x, y, z) coordinates. Compared to
camera-based sensors, LIDAR offers superior depth perception and
is robust to changes in lighting conditions, making it particularly
useful for object detection in diverse driving environments [11, 16].
In modern autonomous driving systems, LiDAR serves as a critical
component of the perception stack, enabling vehicles to recognize
nearby obstacles and navigate safely [3].

LiDAR object detection aims to identify and localize objects (e.g.,
vehicles, pedestrians, and cyclists) within the raw 3D point cloud
data collected by the sensor. The typical detection pipeline begins
by preprocessing the raw point cloud to convert it into a more struc-
tured format, such as voxel grids, bird’s-eye-view (BEV) images,
or range maps, using techniques like voxelization or projection
[11, 41-43, 47]. These structured representations are then fed into
deep learning models, commonly 3D Convolutional Neural Net-
works (CNNs) or point-based architectures such as PointNet++ [30]
and PointPillars [25], which extract spatial and semantic features
from the data. The output of the detection model typically includes
a set of 3D bounding boxes, each characterized by the object’s
position (center coordinates), size (length, width, height), and orien-
tation (e.g., yaw angle). A confidence score is also often included to
indicate the likelihood that the bounding box corresponds to a real
object. These predictions are then refined using a score threshold
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to filter out low-confidence detections, followed by non-maximum
suppression to eliminate redundant bounding boxes with significant
overlap. LiDAR object detection serves as a foundational capability
for safe and reliable autonomous navigation.

2.2 Object-Based LiDAR Attacks

While LiDAR sensors have become integral to autonomous driv-
ing systems due to their precise 3D perception capabilities, recent
research has shown that LIDAR-based perception pipelines, es-
pecially those powered by DNNs, are vulnerable to various ad-
versarial attacks. Early work in this area focuses on laser-based
attacks [7, 9, 17, 18, 23, 32, 35, 36], where attackers use directed laser
beams to inject false points into the LiDAR data stream. Although
these attacks can disrupt perception, their practical deployment
is limited by strict line-of-sight and timing requirements, which
are hard to maintain in dynamic driving environments. To over-
come these limitations, a growing body of work has shifted toward
object-based attacks [1, 8, 10, 28, 38, 46, 48, 49, 51], where the at-
tacker places physical adversarial objects in the environment to
manipulate LiDAR outputs. These objects range from specially fab-
ricated adversarial shapes to common, everyday items, and they
can cause the perception system to miss objects. Due to their low
cost and high practicality, object-based attacks pose a more severe
real-world threat to AV safety. They are generally categorized into
two types: attacks using objects with specific, crafted shapes, and
attacks using common, easily accessible objects.

For attacks using objects with specific shapes, they rely on phys-
ically realizable adversarial objects whose geometry is carefully
optimized to deceive LiDAR detection models. The shapes are typi-
cally non-standard and are generated in simulation before being
materialized with tools like 3D printers. One of the earliest demon-
strations of this idea comes from Cao et al. [10], who design object
geometries that can fool a LIDAR detection system when placed
in the environment. However, the effectiveness of this approach is
limited to specific scenes. To increase generalizability, Tu et al. [38]
propose universal adversarial objects that remain effective across
different scenes and vehicles. Despite these improvements, the ob-
jects still face challenges in physical robustness, as errors can occur
during LiDAR sampling due to surface irregularities. Subsequent
work by Zhu et al. [48] improves surface design to better conform
to LiDAR’s discrete scanning behavior.

For attacks involving common objects, researchers have shown
that everyday items can be repurposed as effective adversarial
objects. Zhu et al. [51] find that there are spatially sensitive regions
in the driving environment where placing reflective objects, such as
drones or cardboard, can successfully deceive the LiDAR perception
models used by AVs. For example, drones can be made to hover at
specific locations around a target vehicle to hide it from detection.
These attacks have also been shown to be effective across different
LiDAR-based tasks, such as semantic segmentation [49]. Beyond
attacks that only target the inference stage, Zhang et al. [46] propose
a backdoor attack in which the model is first trained on poisoned
data and later triggered during inference by placing a common
object, such as a carrier bag or box, in the environment. In addition,
Lou et al. [28] extend the use of common adversarial objects to
trajectory prediction.
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2.3 Countermeasures for Object-Based Attacks
on LiDAR Perception

To defend against object-based LiDAR attacks in autonomous driv-
ing, a range of countermeasures have been proposed. However, to
the best of our knowledge, no existing approach offers real-time
attack detection with consistently high success rates. Most defenses
suffer from limitations in either effectiveness, scalability, or prac-
tical deployment in real-world driving scenarios. Current defense
strategies against object-based LiDAR attacks generally fall into
three broad categories: adversarial training, multi-sensor fusion,
and runtime LiDAR data analysis.

Adversarial Training. To enhance the robustness of LIDAR
object detection models, several studies [8, 28, 38, 46, 49, 51] pro-
pose to use training-time defenses that incorporate adversarial
examples. The central idea is to expose the model to adversarial
point clouds, which are generated using known attack methods,
during the offline training phase. These point clouds typically in-
clude perturbations caused by adversarial objects, which are added
to the training data via data augmentation or adversarial training
strategies. The goal is to increase the model’s resilience to similar
perturbations that may occur during deployment. However, a key
limitation of these methods is their reliance on prior knowledge of
specific attack types. In practice, it is often infeasible for defenders
to anticipate the exact attack strategy that an attacker may employ.
Different attack methods can lead to highly diverse configurations
of adversarial objects, varying in shape, size, and placement. This
variability makes it challenging for training-based defenses to gen-
eralize effectively. As a result, these approaches have shown only
marginal effectiveness in reducing attack success rates [45].

Multi-Sensor Fusion. Another line of defense proposed in ex-
isting studies involves leveraging data from multiple sensors, such
as cameras and radar, to compensate when LiDAR inputs are un-
reliable or manipulated [26, 33, 46, 49]. The intuition is that by
cross-validating information across modalities, the victim AV may
detect inconsistencies and maintain perception reliability under
attack. While this approach can enhance system redundancy, it
does not directly eliminate the underlying vulnerability of the Li-
DAR module itself. More critically, recent studies have shown that
other sensing modalities, including cameras and radar, are also vul-
nerable to adversarial attacks [8, 24, 50]. A sophisticated attacker
could exploit this weakness by launching coordinated attacks across
multiple sensor types, rendering fusion-based defenses ineffective.

Runtime LiDAR Data Analysis. This category of defenses
operates during runtime by analyzing and processing LiDAR point
clouds collected as the AV navigates its environment. Hau et al. [19]
propose identifying “shadow” regions, which are voids in the point
cloud caused by occlusion, as indicators of hidden obstacles. Their
method attempts to infer the physical sources of these voids by
analyzing the geometric structure of the surrounding scene. While
conceptually appealing, the approach suffers from high computa-
tional overhead, with processing times averaging tens of seconds
per scene, making it impractical for real-time autonomous driving
where low-latency response is essential. Zhu et al. [48] present
an alternative defense that applies a smoothing algorithm to Li-
DAR scans in order to suppress adversarial patterns introduced by
specially shaped physical objects. Although effective against the
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Figure 1: An example of the vehicle hiding attack.

specific attack it targets, this method lacks robustness against more
general attack scenarios. In particular, it fails when adversaries
use common, easily obtainable objects instead of custom-designed
shapes. Furthermore, the smoothing process may degrade the pre-
cision of detecting benign objects, thereby reducing its reliability
in practice.

More recently, Zhang et al. [45] propose an online defense mech-
anism that continuously monitors the incoming LiDAR stream
and extracts suspicious point clusters in front of the vehicle. This
method uses a reinforcement learning-based search strategy to
isolate and remove adversarial points from the identified cluster.
While the approach demonstrates strong detection performance
and adaptability, it imposes considerable runtime overhead due to
the computationally intensive search process, which may take sev-
eral seconds to process each LiDAR frame. Such latency limits its
practicality in autonomous driving scenarios, particularly when the
vehicle is traveling at high speeds. Moreover, the method assumes
that attackers use only the minimal number of objects necessary
for a successful attack. In practice, however, attackers may intro-
duce redundant objects to increase attack robustness, potentially
reducing the defense’s effectiveness.

In contrast to these prior approaches, our work seeks to develop
a real-time, attack-agnostic defense mechanism that imposes no
assumptions on the number, size, or shape of adversarial objects,
while remaining computationally efficient enough for deployment
in practical autonomous driving systems.

3 Threat Model and Design Challenges

3.1 Threat Model

Attack Setting. This paper focuses on a widely studied class of
object-based LiDAR attacks, referred to as vehicle hiding attacks,
which have drawn increasing attention in the autonomous driving
security literature [38, 46, 48, 49, 51]. As illustrated in Figure 1,
such attacks aim to hide a target vehicle, which is often parked on
the road, from the victim AV’s object detection system by strategi-
cally placing adversarial objects around it. This can lead the AV to
misinterpret its surroundings, potentially resulting in hazardous
situations such as collisions. In line with prior work, we assume the
attacker lacks access to the AV’s real-time sensory data. However,
the attacker can approximate the AV’s view by collecting surro-
gate LiIDAR scans from various angles and distances around the
target scene. Additionally, the attacker may have either white-box
or black-box access to the AV’s LiDAR object detection model.
Defense Goal. Our objective is to design a real-time defense
mechanism that can effectively mitigate object-based LiDAR at-
tacks. A key design requirement is to ensure that the solution is
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agnostic to both the specific attack strategy and the underlying ob-
ject detection model. The defense should integrate seamlessly into
existing AV software stacks without requiring significant modifica-
tions to system components. We consider a practical setting where
the defender has no prior knowledge of the adversarial objects
(including their quantity, size, shape, or placement). Furthermore,
the defender does not know in advance which road segment may
be targeted by the attack.

3.2 Challenges and Design Rationale

Next, we outline the key challenges in achieving the defense goal
and explain the design rationale behind our proposed solution.

Diverse LiDAR Object Detection Systems. Various LiDAR-
based object detection systems have been developed for AVs, often
adopting different detection models and architectures. Prior re-
search has shown that many of these state-of-the-art LiDAR object
detection models are vulnerable to object-based attacks. To ensure
broad applicability and robustness, our defense mechanism is de-
signed to be model-agnostic and compatible with diverse LIDAR
object detection pipelines. Specifically, we propose a modular de-
fense that can be integrated into the AV system as an independent
module positioned between the sensing and perception modules.
This module obtains raw LiDAR data from the sensing module,
filters out potential adversarial threats, and outputs a cleaned point
cloud to the perception module. Crucially, our approach does not
rely on or require modification of the downstream object detection
model, ensuring ease of integration with different AV platforms.

Real-Time Efficiency Requirement. Autonomous driving de-
mands highly efficient, near-instantaneous decision-making, espe-
cially in response to adversarial threats. Attacks often occur when
the AV is in motion, possibly at high speeds, and the distance be-
tween the victim AV and the target vehicle is typically short (e.g.,
tens of meters). As a result, the available reaction window is ex-
tremely limited. Any delay in identifying or mitigating an attack
may lead to unsafe behavior or collisions. To meet these real-time
constraints, our defense avoids computationally intensive search-
based methods that aims to search out every adversarial object in
the complex 3D space. Instead, we introduce a lightweight genera-
tive model, based on which we can directly generate a clean version
of the point cloud from potentially contaminated input. By bypass-
ing object-level analysis and instead generating a purified point
cloud, our approach significantly reduces computational overhead
and supports real-time response.

Unknown Attack Location. Another practical challenge is
that the location of the attack is unknown in advance. An effective
defense must therefore continuously monitor the driving environ-
ment without introducing unnecessary overhead or disruptions to
the AV’s normal operation. Naively applying the above mentioned
generative model to every LiDAR frame would be inefficient, as
attacks are rare in real-world driving scenarios. To address this,
our system adopts a trigger-based activation strategy: the genera-
tive model-based defense is only engaged when a suspicious point
cluster appears in front of the AV but is not reported by the object
detection model. The rationale is that, during a successful attack,
although the adversarial objects and the target vehicle are not de-
tected, their corresponding LiDAR reflections still exist in the raw
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point cloud. Therefore, if a point cluster exists in the scene but no
corresponding detection is produced, it may indicate an ongoing at-
tack, prompting the defense mechanism to perform further analysis
and sanitize the data accordingly.

Unknown Attack Strategy. As discussed in Section 2.2, nu-
merous object-based LiDAR attack methods have been proposed,
each using different configurations of adversarial objects in terms
of number, location, size, and shape. In practice, defenders have no
prior knowledge of these properties, and the defense must remain
effective regardless of the specific attack strategy. However, this
variability makes it extremely difficult to train a model to directly
identify and remove adversarial objects, because they can take vir-
tually any form or placement in the environment. To overcome this,
we shift our focus to the common element across all attacks: the
target vehicle that the attacker aims to hide. Existing studies have
shown that attackers typically choose regular-sized vehicles as tar-
gets to maintain stealth. Given the limited diversity of real-world
vehicle shapes and sizes, it is more tractable to learn to extract
the information about the hidden vehicle than to detect the sur-
rounding adversarial artifacts. Therefore, our defense is designed
to estimate and extract the surface points of the target vehicle from
mixed point clusters containing both the hidden vehicle and nearby
adversarial objects. These estimated surface points can then be
used to guide the removal of LiDAR points associated with the
adversarial objects.

4 Methodology
4.1 Overview

In this paper, we propose a novel real-time defense mechanism
capable of removing LiDAR points generated by adversarial objects
before the data is fed into downstream LiDAR perception models.
As illustrated in Figure 2, the proposed defense can be seamlessly
integrated into the pipeline of an autonomous driving system, posi-
tioned between the sensing and perception modules. The defense
mechanism operates in three major steps: (1) suspicious point clus-
ter extraction, (2) vehicle surface estimation, and (3) adversarial
object removal.

Step 1: Suspicious Point Cluster Extraction. As discussed in
Section 3.1, this paper considers vehicle hiding attacks, in which the
attacker aims to hide a target vehicle from the LiDAR-based object
detection system. Although these attacks may cause the detection
model to miss the target vehicle and nearby adversarial objects,
the corresponding LiDAR reflections from both still exist in the
raw point cloud. Therefore, the first step of the proposed defense
mechanism is to continuously monitor the incoming LiDAR point
clouds and examine whether a suspicious cluster exists within
a designated region of interest (for example, the road segment
of a specified length directly in front of the victim AV). Such a
point cluster can be extracted using segmentation and clustering
algorithms. Intuitively, if a cluster is present in the scene but the
object detection model fails to detect any object at that location,
it is flagged as suspicious. The cluster is likely to contain both the
hidden vehicle and the surrounding adversarial objects.

Step 2: Vehicle Surface Estimation. The second step is exe-
cuted only when a suspicious point cluster has been identified in
Step 1. The goal of this step is to estimate the surface points of
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Figure 2: Overview of the proposed defense mechanism.

the target vehicle by leveraging the extracted suspicious cluster
and applying a transformer-based point cloud generative model.
The underlying intuition is that adversarial objects are typically
positioned in the vicinity of the target vehicle but do not overlap
with it. As a result, the estimated vehicle surface can act as a reliable
reference for distinguishing genuine vehicle points from adversarial
ones. More specifically, if a LIDAR point falls outside the estimated
vehicle surface, there is a high likelihood that it originates from an
adversarial object rather than from the vehicle itself.

Step 3: Adversarial Object Removal. In the third step, points
generated by adversarial objects are identified and removed by com-
paring the extracted suspicious cluster with the estimated vehicle
surface obtained in Step 2. This comparison is performed by mea-
suring the distance between each point in the suspicious cluster and
the nearest point on the estimated surface. If the distance exceeds a
predefined threshold, the point is classified as originating from an
adversarial object and is removed from the suspicious cluster. After
this filtering process, the cleaned cluster, now free of adversarial
points, is reinserted into the original point cloud by replacing the
extracted suspicious region. The resulting cleaned point cloud can
then be utilized to enable more robust and reliable object detection.

It is important to note that the estimated surface points obtained
in Step 2 are not used directly for object detection. This is because
the goal of Step 2 is not to precisely reconstruct the original point
cluster of the target vehicle in the raw LiDAR point cloud, which
would necessitate a more complex and computationally intensive
model. Instead, we employ a relatively lightweight generative model
that approximates the target vehicle’s surface sufficiently well to
serve as a reference for filtering out adversarial points. While this
estimation may lack the level of detail required for precise vehicle
detection, it provides adequate structural cues to enable reliable
removal of adversarial objects. This design offers a balance between
defense effectiveness and computational efficiency. Next, we discuss
the detailed design of each step.

4.2 Suspicious Point Cluster Extraction

In this step, the collected LiDAR data is analyzed to identify the
suspicious point cluster located in front of the victim AV. This
cluster may correspond to the target vehicle hidden through ad-
versarial attacks. The effectiveness of this extraction strategy has
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Figure 3: Overview of the vehicle surface estimation model.

been demonstrated in prior defense research against object-based
LiDAR attacks [45], and we adopt a similar approach in this work.
Specifically, we first apply the RANSAC (Random Sample Consen-
sus) algorithm [13] to identify and remove points corresponding to
the road surface. This enables isolation of LiDAR points above the
ground, which are more likely to represent objects of interest. Next,
we define a Region of Interest (ROI) based on typical attack sce-
narios. In many existing object-based LiDAR attacks, the attacker
attempts to hide a vehicle positioned in front of the victim AV by
strategically placing adversarial objects surrounding it. Accord-
ingly, we define an ROI extending ahead of the AV to capture such
potential threats. Within this ROI, the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm is applied
to segment the remaining above-ground points into clusters. In
some cases, multiple clusters may be segmented. We only focus on
the cluster whose shape is most similar to a vehicle. If the cluster
is present within the ROI but is not recognized as vehicle by the
LiDAR perception model, it is flagged as a suspicious point cluster
and passed to Step 2 for further analysis.

It is important to note that, due to the complexity of real-world
environments, suspicious clusters can also arise from benign factors
such as roadside billboards or environmental artifacts like snow or
fog. Therefore, it is neither practical nor reliable to trigger defensive
driving maneuvers based solely on the presence of such clusters.
Additional processing is needed to verify whether the suspicious
cluster corresponds to a hidden vehicle or represents a false alarm.

4.3 Vehicle Surface Estimation

The goal of this step is to estimate the surface of the target vehicle,
which serves as a reference for identifying surrounding adversarial
objects. To achieve this, we design a generative model that directly
predicts the surface points of the target vehicle based on the suspi-
cious point cluster extracted in Section 4.2. However, developing
an effective generative model for this task is challenging due to the
variability in LiDAR point density.

For a given vehicle, the number of LiDAR points captured on
its surface depends heavily on the distance between the vehicle
and the LiDAR sensor. Most LiDAR sensors operate with a fixed
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angular resolution, emitting beams at consistent angular intervals
(e.g., 0.2° horizontally). As a result, objects that are closer to the
sensor receive denser point coverage because the angular beams
intersect with them at smaller spatial intervals. Conversely, ob-
jects farther away receive sparser coverage, as the same angular
gaps cover larger physical areas and fewer beams strike the object.
Therefore, the generative model must be trained to extract mean-
ingful geometric features from both dense and sparse point clouds.
It should also generalize well during inference to generate accurate
surface point estimations for target vehicles observed at varying
distances. This capability is crucial for real-time defense, as the
victim AV is continuously approaching the target vehicle, and the
defense must remain effective regardless of the relative distance
during the detection process.

To meet this challenge, we propose a novel generative model
with a dual-branch encoder-decoder architecture. As shown in Fig-
ure 3, the model includes a transformer-based encoder that captures
both global and local geometric features, followed by two decoder
branches: a Low-Resolution Decoder (LRD) and a High-Resolution
Decoder (HRD). The LRD is designed to generate a coarse, sparse
approximation of the vehicle’s surface, while the HRD produces a
dense and detailed reconstruction. This dual-decoder architecture
improves the model’s adaptability to varying input densities. When
the target vehicle is far from the sensor, the suspicious point cluster
is typically sparse and lacks detailed structure. In such cases, the
LRD generates a coarse surface that offers more reliable estimation
for identifying and filtering adversarial points. Conversely, when
the vehicle is closer and the point cloud is denser, the HRD generates
fine-grained surface details, enabling more accurate identification
of adversarial objects. This design ensures robust surface estimation
under diverse sensing conditions, enhancing the effectiveness of
the subsequent defense step.

Encoder. The encoder is designed to extract both global and
local features from the input suspicious point cluster. It begins with
a PointNet-based feature extraction module, which processes the
input point cloud using a series of multilayer perceptrons (MLPs),
and each layer is followed by batch normalization and ReLU acti-
vation. The input to this module is a point cluster of shape (N, 3),
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where N is the number of points in the cluster, and each point is
represented by its (x, y, z) coordinates. In our implementation, we
use three MLP layers with output channels of 64, 128, and 1024,
respectively. The output of this stage is a set of point-wise features
with shape (N, 1024), representing raw encoded features for each
point. A subsequent linear layer followed by GELU activation is ap-
plied to reduce the dimensionality of these features, resulting in an
embedding of shape (N, 256). To preserve fine-grained geometric
detail, we also retain intermediate low-level features extracted from
earlier MLP layers. These features capture local structure and are
later fused in the decoding stage to enhance surface detail estima-
tion. Additionally, we compute sinusoidal positional encodings for
each point and add them to the point-wise features to incorporate
spatial information. The resulting features are then passed through
a stack of transformer layers to model long-range dependencies
and capture global contextual information. Each transformer layer
consists of a multi-head self-attention mechanism (with 4 heads)
and a feed-forward network with a hidden dimension of 512. We use
a stack of four such layers, producing context-aware point-wise fea-
tures of shape (N, 256), which serve as the encoded representation
for downstream processing.

Low-Resolution Decoder (LRD). The LRD aims to generate a
coarse approximation of the vehicle surface, capturing the global
structure of the vehicle surface. The input to the LRD originates
from the encoded point-wise feature tensor of shape (N, 256). To re-
duce redundancy and focus on high-level structure information, we
apply a pooling operation to the encoded representation and down-
sample each sample to 128 representative tokens. This produces
a token tensor of shape (128, 256), which retains essential global
information while filtering out noise and minor variations. These
tokens are then fed into a transformer-based decoder composed of
four stacked transformer layers. Each layer applies a multi-head
attention mechanism (with 4 heads) to refine the token embed-
dings and capture inter-point relationships. The layers also include
feed-forward networks with hidden dimension 512, along with
residual connections and layer normalization, to stabilize training
and maintain feature integrity. This transformer-based decoding
process enables the model to learn long-range dependencies and
the overall surface topology of the vehicle. Such global understand-
ing is essential for producing accurate surface estimates, which
serve as a foundation for identifying and removing surrounding
adversarial objects in the next step. Finally, the refined features are
passed through a linear layer with GELU activation to regress the
(x,y, z) coordinates of the predicted vehicle surface points. We set
the number of output points to 128. The resulting output of the
LRD is a sparse point cloud that provides a coarse yet structurally
meaningful approximation of the vehicle surface.

High-Resolution Decoder (HRD). The HRD is designed to
produce a detailed estimation of the vehicle surface with higher
point density. In this branch, the global contextualized point-wise
embeddings of shape (N, 256) are concatenated with low-level in-
termediate features extracted from an earlier layer in the encoder.
This fusion enables the decoder to leverage both high-level semantic
information and fine-grained geometric details. The concatenated
features are passed through a linear layer followed by GELU ac-
tivation, yielding a fused representation of shape (N, 256). These
fused features are then transformed into a dense set of tokens of
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shape (512, 256), representing a more fine-grained encoding of the
surface structure. In parallel, the intermediate embeddings from
the LRD branch are upsampled to match this resolution, producing
another token set of shape (512, 256). A multi-head cross-attention
module (with 4 heads) is applied to refine the dense features. In this
setup, the dense tokens act as queries, while the upsampled LRD
tokens serve as keys and values. The cross-attention mechanism
enables the HRD to incorporate coarse global cues from the LRD
into its high-resolution surface estimation. A residual connection
adds the attention output back to the original dense tokens, facil-
itating stable learning and information preservation. Finally, the
refined dense tokens are passed through a linear layer to regress
the (x, y, z) coordinates of the predicted vehicle surface points. In
this branch, we set the number of output points to 512. The HRD
generates a dense point cloud that offers a high-resolution, struc-
turally detailed approximation of the vehicle surface, supporting
precise adversarial object removal in downstream processing.

In practice, the appropriate decoder output is selected based on
the density of the extracted suspicious point cluster. For sparse
inputs, where the number of points falls below a predefined thresh-
old, we use the surface points generated by the LRD. For denser
inputs with richer structural detail, the output from the HRD is
used instead.

4.4 Adversarial Object Removal

The goal of this step is to remove LiDAR points generated by ad-
versarial objects using the estimated vehicle surface obtained in
Section 4.3. After selecting the appropriate vehicle surface estimate,
we compare it with the extracted suspicious cluster to identify
points likely originating from adversarial objects. Specifically, for
each point p; in the suspicious cluster, we compute its distance d; to
the nearest point on the estimated vehicle surface P,. This distance
is defined as:

d; pI;lEi{}v llpi = pjll;- (1)
Here, p; denotes the (x,y,z) coordinates of the i-th point in the
suspicious cluster, and p; represents the (x, y, z) coordinates of the
Jj-th point in the generated vehicle surface point set P,.

If the distance d; exceeds a predefined threshold 77, the point
is considered an outlier relative to the estimated vehicle surface.
This suggests a high likelihood that the point originates from an
adversarial object rather than the target vehicle. All such outlier
points are removed from the original collected LiDAR point cloud,
resulting in a refined point cloud that contains only points that are
not generated by adversarial objects. The cleaned point cloud is
then passed to the downstream object detection module, allowing
the system to generate robust detection results in the presence of
adversarial attacks.

4.5 Model Training and Threshold Selection

To ensure the effectiveness of the proposed defense mechanism,
two key challenges must be addressed: (1) how to train the parame-
ters of the generative model so that the estimated vehicle surface
can reliably support the adversarial object removal step, and (2)
how to select an appropriate threshold value 7~ to enable accurate
separation of adversarial points from vehicle surface points.
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To address these challenges, we propose to jointly optimize the
generative model parameters and the threshold during the train-
ing stage in order to maximize overall defense performance. The
underlying intuition is that the optimal threshold depends on the
quality of the generated vehicle surface, while the optimal surface
generation is also influenced by the threshold used for identifying
adversarial points. Specifically, we formulate the following opti-
mization problem:

?? Leta-Ly+p- Ly, ®)
where 6 denotes the parameters of the generative model described
in Section 4.3, and 7 is the distance threshold used during adver-
sarial object removal. The objective function combines three loss
components: a point-wise classification loss (L), which quanti-
fies the accuracy of identifying adversarial points; a Chamfer loss
(L), which measures the geometric similarity between the esti-
mated and ground-truth vehicle surfaces; and a structural shape
loss (L4), which captures local surface geometry by comparing cur-
vature patterns. Both decoder branches (LRD and HRD) are trained
using this combined loss function. We describe the loss terms in
more detail below.

Point-Wise Classification Loss L. As described in Section 4.4,
the object removal step classifies each point in the suspicious point
cluster as either part of an adversarial object or the target vehicle
surface using a distance threshold. In the training data, each point
is labeled with a ground-truth binary value: 1 for adversarial points
and 0 for vehicle surface points. The classification loss is defined as
the mean squared error (MSE) between predicted and ground-truth
labels:

1w 2
L= N Z(Cpred,i - cgt,i) > (3)
i=1
where cg; € {0,1} is the ground-truth label for the i-th point in
the suspicious point cluster, and cpred; is the predicted label. Since
the original threshold-based classification is non-differentiable, we
approximate it using a sigmoid-based formulation:

Cpredi = Sigmoid(/,t - (di - T)) 4)

where d; is the distance from point p; to the estimated vehicle
surface (defined in Eq. (1)), 7 is the threshold for classification, and
1 is a scaling factor that controls the steepness of the transition.

Chamfer Loss .£,. To ensure accurate surface estimation, we
adopt the Chamfer Distance [4, 15, 44] to measure the geometric
similarity between the predicted and ground-truth vehicle surface
point clouds. The Chamfer Distance computes the average nearest-
neighbor distance between two point sets in both directions, penal-
izing points that are not well-aligned between the predicted and
reference surfaces. This encourages the predicted surface to closely
approximate the true geometry of the target vehicle. Formally, the
Chamfer loss is defined as:

Lp = DChamfer(Pv, PZ)

o Z o

= min ||p; — p;llz + E min ||pi = pj|l2,
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where P, and P}, represent the predicted and ground-truth surface
point sets, respectively. The first term penalizes predicted points
that are far from any ground-truth points, while the second term
penalizes ground-truth points that are not well matched by the
prediction. This bidirectional structure helps ensure both coverage
and compactness, making Chamfer Distance a powerful tool for
surface estimation tasks.

Structural Shape Loss L. While the Chamfer loss £, ensures
global geometric alignment between the predicted and ground-
truth vehicle surfaces, it primarily captures point-level proximity
and may fail to enforce the preservation of fine-grained structural
properties, such as surface curvature and continuity, that are critical
for distinguishing vehicle surfaces from adversarial artifacts. To
address this limitation, we introduce a structural shape loss that
explicitly measures and penalizes discrepancies in local curvature
between the predicted and reference surfaces. This loss encourages
the generative model to estimate not only the overall shape but
also the intrinsic geometric characteristics of the surface, thereby
enhancing the robustness of subsequent adversarial object removal.
Formally, the loss is defined as:

N

1
Ld = ﬁ Z (Kpred,i - th,i)z 5

i=1

(6)

where Kpreq,; is the estimated curvature at the i-th point p; on the
predicted surface, and «g; is the curvature of the closest point
on the ground-truth surface. Curvature is computed following the
method described in [29]. For each point p;, we first identify its
k-nearest neighbors and compute the local covariance matrix:

k
Ci= (pi=p)(pj = p), )
j=1

where p; denotes the j-th neighboring point of p;. The eigenvalues
A1 £ A3 £ A3 of C; are then calculated, and the curvature at point
pi is defined as:

=TT o ®)

1+ A2+ A3

This formulation captures the flatness or sharpness of local surface
regions, with lower curvature indicating flatter areas and higher cur-
vature indicating sharper features. By minimizing the discrepancy
between the predicted and ground-truth curvatures, the structural
shape loss helps enforce local consistency.

When computing the Chamfer loss £, and the structural shape
loss L4, we normalize the ground-truth surface point cloud of the
target vehicle to match the output size of each decoder branch.
Specifically, for the LRD branch, the ground-truth surface is resam-
pled to contain exactly 128 points. If the original point cloud has
more than 128 points, the excess points are randomly downsampled,;
if it contains fewer than 128 points, additional points are added
via padding (e.g., zero-padding or duplication). The HRD branch
follows the same procedure, with the ground-truth surface adjusted
to contain exactly 512 points. Both the LRD and HRD branches
operate concurrently during training, and their respective loss val-
ues are computed independently. The final training loss is obtained
by summing the loss contributions from both branches, ensuring
that the model learns to reconstruct vehicle surfaces accurately at
multiple levels of resolution.

Ki
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Optimization. The optimization involves two interdependent
components: the generative model parameters 6 and the distance
threshold 7~ used for adversarial object identification. The optimal
threshold 7~ depends on the quality of the generated vehicle surface,
which is governed by 6. Conversely, learning an optimal 6 requires
a reliable threshold to accurately distinguish adversarial points
from true surface points. To address this mutual dependency, we
adopt an alternating optimization strategy, which is well-suited
for optimizing problems with coupled variables. In this framework,
the parameters 6 and 7 are updated alternately in two stages.
In the first stage, we fix the threshold 7~ and optimize the model
parameters 0, ensuring that the generative model produces a surface
estimation that not only approximates the target geometry but also
supports effective adversarial object identification under the current
threshold. In the second stage, we fix 6 and optimize the threshold
7 to best separate adversarial points from vehicle surface points,
given the current surface predictions. These two steps are repeated
iteratively until a convergence criterion is satisfied, resulting in
a jointly optimized surface generator and threshold tailored for
robust defense performance.

5 Performance Evaluation

5.1 Experimental Setting

LiDAR Object Detection Models. We evaluate our defense using
two state-of-the-art LIDAR object detection models: PIXOR [42] and
PointPillars [25]. PIXOR performs real-time, anchor-free detection
using a bird’s-eye view (BEV) projection of the point cloud. Point-
Pillars partitions the point cloud into vertical columns (pillars) and
applies a PointNet-based encoder, followed by 2D convolutions in
BEV space. Both models are configured with a detection confidence
threshold of 0.5.

LiDAR Dataset. We conduct our evaluation on the KITTI
dataset [16], which contains 7,481 training samples and 7,518 test
samples collected from real-world driving scenarios. Since our fo-
cus is on object-based attacks that aim to hide a front vehicle, we
select samples in which a vehicle appears directly ahead of the ego
vehicle in the same lane.

Attack Methods. In our evaluation, we consider several state-of-
the-art object-based LiDAR attack methods, covering both attacks
that utilize specially shaped adversarial objects and those that ex-
ploit common items. The evaluated attacks include:

o AdvObj [38]: This attack is designed for hiding a target vehi-
cle from the LiDAR detection system of an AV by placing a
3D-printed object with an adversarially designed shape on
the rooftop of the target.
AE-Morpher [48]: This attack is an enhanced version of Ad-
vObj, in which the adversarial object is still placed on the
target vehicle. This method further optimizes the adversarial
object’s geometric properties to improve physical robustness
and increase attack effectiveness.
AdvLoc [51]: In contrast to the above attack methods that rely
on adversarial objects with specific shapes, AdvLoc uses an
optimization process to identify vulnerable spatial locations
around the target vehicle where common objects can be
placed to mislead the LiDAR detection model adopted by the
victim AV and hide the target.
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o BALIDAR [46]: This method is designed as a backdoor attack
that compromises both the training and inference phases by
injecting poisoned point clouds into the training data of the
LiDAR detection model. At inference time, the attacker can
place a common object on the rooftop of a target vehicle to
trigger the backdoor and mislead the detection model.

Baselines. We consider three runtime LiDAR data analysis meth-
ods as baselines: RLDef[45], smoothing defense [48], and shadow
detection[19]. RLDef is an online defense mechanism that continu-
ously monitors the incoming LiDAR stream and extracts suspicious
point clusters in front of the AV. It employs a reinforcement learning-
based search strategy to remove adversarial points from the identi-
fied cluster. The smoothing defense method applies a smoothing
algorithm to LiDAR scans to regularize irregular boundaries of
the adversarial object and suppress adversarial perturbations. The
shadow detection method identifies “shadow” regions (voids in the
point cloud caused by occlusion) as potential indicators of hidden
obstacles. It infers the presence of such obstacles by analyzing the
geometric structure of the surrounding scene.

Evaluation Metrics. We measure the performance of our de-
fense using the following metrics:

o Detection rate (DR): This metric is defined as the percentage

of attacked LiDAR frames in which the hidden target vehicle
is successfully detected by the defense, relative to the total
number of attacked frames. A higher detection rate indicates
stronger defense effectiveness.
Runtime (RT): This metric is defined as the average time
required to process a single attacked LiIDAR frame and detect
the hidden vehicle. This includes the runtime of both the
defense mechanism and the downstream LiDAR detection
model, which may vary depending on the model used. Lower
runtime reflects better computational efficiency.

Additional Settings. In our experiments, the threshold for se-
lecting the appropriate decoder is set to 256, based on an analy-
sis of typical per-vehicle point counts at various distances in the
KITTI dataset. Specifically, if the number of points in the extracted
suspicious point cluster exceeds 256, the output of the HRD is
used for adversarial object removal; otherwise, the LRD output is
applied. This ensures that dense clusters are processed with the
high-resolution decoder, while sparser clusters are handled by the
low-resolution decoder. In practice, the threshold can be tuned to
accommodate different LIDAR sensors or data distributions. The
experiments are conducted on a platform equipped with an Intel
19-10920X processor and an NVIDIA RTX 6000 GPU. Additionally,
we evaluate the proposed defense on the NVIDIA Jetson AGX Orin
to assess its real-time performance on resource-constrained edge
computing platforms.

5.2 Overall Performance

Performance Under Different Attacks and Distance Ranges.
We begin by evaluating the effectiveness and efficiency of our pro-
posed defense mechanism under different attacks. All four attack
methods are implemented following the settings described in their
respective original papers. Specifically, for the AdvObj and AE-
Morpher attacks, we follow the original configurations by gener-
ating a uniquely shaped adversarial object for each method and
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Table 1: Defense performance under different attacks and distance ranges.

10-20 m 20-30 m 30-40 m 40-50 m
Attack DR (%) RT (s) DR (%) RT (s) DR (%) RT (s) DR (%) RT (s)
Ours RLDef Ours RLDef Ours RLDef Ours RLDef Ours RLDef Ours RLDef Ours RLDef Ours RLDef
AdvLoc 93.3 81.7 0.056 2.9 93.3 80.0 0.055 2.5 91.7 83.3 0.058 2.6 90.0 86.7 0.054 2.1
BALiDAR 90.0 76.7 0.054 3.1 88.3 75.0 0.056 3.2 93.3 81.6 0.056 3.1 91.7 80.0 0.056 2.7
AdvODbj 91.7 76.7 0.055 2.8 93.3 80.0 0.056 2.6 93.3 85.0 0.056 2.4 88.3 88.3 0.055 2.3
AE-Morpher  95.0 81.7 0.056 2.9 90.0 80.0 0.055 2.8 91.7 83.3 0.055 2.6 93.3 81.7 0.056 2.5
Table 2: Comparison with other baseline methods.
Adversarial .
Object i
AdvLoc BALiDAR
Defense I
DR(%) RT(s) DR(%) RT(s) '
Smoothing Defense 11.7 0.28 4.0 0.29 (a) (b) (c)
Shadow Detection 83.3 17.1 83.3 18.2
Ours 93.3 0.056 91.7 0.055 Adversarial ] T,

placing it on the rooftop of the target vehicle. For the AdvLoc
attack, we use drone-suspended billboards as adversarial objects,
positioning them at strategically identified adversarial locations
near the target vehicle. In the case of the BALIDAR attack, we
adopt a spherical object with a radius of 0.4 meters as the backdoor
trigger. Unless otherwise specified, PIXOR is used as the default
object detection model in all subsequent experiments. To train the
generative model, we construct a set of adversarial training samples
by injecting adversarial objects (generated using the above attack
methods) into clean point clouds collected from the KITTI dataset.

Table 1 reports both the detection rate (DR) and runtime (RT) of
our defense and the baseline RLDef across varying attack scenarios.
We consider four distance ranges between the target vehicle and
the victim AV: 10-20 m, 20-30 m, 30-40 m, and 40-50 m. For each
distance range, we randomly select 60 successfully attacked LIDAR
frames for evaluation. Note that the average recalls achieved by the
detection model without any defense under the four attacks (Ad-
vLoc, BALIDAR, AdvObj, and AE-Morpher) are 14.0%, 11.0%, 25.6%,
and 16.0%, respectively. These results demonstrate that these attacks
are effective and can significantly degrade the performance of the
detection model. Table 1 show that our defense consistently outper-
forms RLDef across all attack methods and distance ranges. In most
cases, the detection rate of our approach exceeds 90%, demonstrat-
ing high effectiveness in detecting hidden vehicles. Moreover, our
method also achieves much lower runtime across all settings, with
an average processing time of less than 0.06 seconds per LIDAR
frame, which is well within the real-time constraints of autonomous
driving systems. These findings highlight the advantages of our
approach in terms of both robustness and efficiency, making it a
practical solution for defending against object-based LiDAR attacks
in real-world AV deployments

We also compare our defense with two additional baselines: the
smoothing defense method and the shadow detection method. For
each of these baseline methods, we evaluate performance under
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Figure 4: Visualization of generated vehicle surfaces for two
test samples (one per row). (a) and (d): Input suspicious point
clusters; (b) and (e): LRD outputs; (c) and (f): HRD outputs.

both the AdvLoc and BALiDAR attacks. In this experiment, we use
the same generative model as described above. For each scenario,
we randomly select 60 LiDAR frames from the 10-50 meter distance
range between the target vehicle and the victim AV for evaluation.
The results are presented in Table 2, and they further demonstrate
the advantages of our proposed defense. The smoothing defense
performs poorly in terms of detection rate because it is primarily
designed to suppress adversarial objects with specific geometric pat-
terns. In contrast, both the AdvLoc and BALiDAR attacks leverage
common objects to achieve their goals, making them more difficult
to counter using geometric smoothing alone. Although the shadow
detection method is effective at identifying obstacles in front of
the victim AV, its high processing latency makes it unsuitable for
real-time autonomous driving applications. Moreover, shadow de-
tection can only determine the presence of an obstacle and cannot
work in conjunction with existing object detection models to infer
additional object properties such as class labels, as our defense does.

Visualization of Generated Vehicle Surfaces. In Figure 4, we
present some visual examples of the vehicle surface points gen-
erated by our proposed generative model. The first and second
rows correspond to two different test samples. In each row, the first
image (Figure 4a or 4d) shows the input suspicious point cluster;
the second (Figure 4b or 4e ) and third (Figure 4c or 4f ) images
display the outputs from the LRD and HRD, respectively. For the
two examples, we can see that when the target vehicle is close to
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Table 3: Defense performance with PointPillars.

Distance range 10-20 m 20-30 m 30-40 m
DR (%) 91.7 86.7 88.3
RT (s) 0.031 0.030 0.031

the LiDAR sensor, which results in higher point density in the sus-
picious cluster, the HRD is able to generate a detailed and accurate
surface closely aligned with the ground truth, as seen in the first
row. However, when the vehicle is farther away and the input is
sparser, the HRD may introduce inaccuracies, such as generating
extraneous surface points outside the vehicle’s actual geometry
(e.g., Figure 4f). In contrast, the LRD produces more reliable surface
estimates under sparse input conditions. These examples demon-
strate the effectiveness of our generative model and highlight the
importance of using dual decoder branches. Dynamically selecting
the decoder output based on the input cluster’s density ensures
more accurate surface estimation, which is essential for reliable
adversarial object removal.

5.3 Defense Analysis

Impact of LiDAR Object Detection Model. The proposed de-
fense mechanism is inherently detection model-agnostic, meaning
it operates independently of any specific LIDAR object detection
architecture. As it does not rely on internal information from the
detection model, it can be seamlessly integrated with a wide range
of existing LiDAR perception systems. To validate the generaliz-
ability of our approach, we evaluate its performance using another
widely adopted detection model—PointPillars. Table 3 reports the
defense results under the AdvLoc attack, using PointPillars for ob-
ject detection. We consider three distance ranges between the target
vehicle and the victim AV and randomly sample approximately 50
successfully attacked LiDAR frames per range. The results show
that our defense maintains high detection rates across all cases
while achieving low runtime. The runtime is notably shorter than
that observed with PIXOR, owing to the greater computational
efficiency of the PointPillars model.

Defense Transferability. In practice, it is often difficult for
defenders to anticipate the specific types of attacks that a victim
AV may encounter. To assess the generalizability of our defense, we
evaluate its performance in scenarios where the attack types used
during training and testing differ. Specifically, we train the gener-
ative model on adversarial examples generated by two combined
attack methods (either AdvLoc+BALIDAR or AdvObj+AE-Morpher)
and then test the defense against the remaining two attacks. Detec-
tion rates for these cross-attack evaluations are reported in Table 4.
The first column show the attack methods used for training, and the
first row presents those used for testing. The results demonstrate
that our proposed defense maintains strong performance across all
cases, achieving detection rates above 85% even when faced with
previously unseen attack types.

Defense Performance When Training with Randomly Gen-
erated Point Clusters. To further assess the generalizability of
our proposed defense, we also explore a more challenging setting

3835

CCS 25, October 13-17, 2025, Taipei

Table 4: Detection rate (%) for defense transferability.

Attack AdvLoc BALIDAR AdvObj AE-Morpher
AdvLoc+BALiDAR - - 91.7 88.3
AdvObj+AE-Morpher 88.3 86.7 - -

Table 5: Detection rate (%) when training with randomly se-
lected point clusters.

10-20m 20-30 m 30-40 m 40-50m
Random cluster 1 90.0 83.3 86.7 76.7
Random cluster 2 85.0 86.7 78.3 71.6

in which the generative model is trained without using any adver-
sarial examples generated by known object-based LiDAR attacks.
Instead, we construct a training set by inserting randomly gener-
ated point clusters into clean LiDAR point clouds and treating them
as adversarial objects. Specifically, we create two random clusters,
with one (cluster 1 in Table 5) having a relatively larger size, and
use each to train a separate generative model. In this experiment,
we evaluate defense performance against the AdvLoc attack. Ta-
ble 5 presents the detection rates within different distance ranges
between the target vehicle and the victim AV. Despite not being
exposed to any actual adversarial objects during training, the model
achieves respectable detection performance, with detection rates
generally ranging from 70% to 90%. While there is a slight drop in
performance compared to models trained on real attack examples,
particularly at longer distances, these results indicate that learning
to distinguish clean vehicle surfaces from random point clusters
can still offer meaningful robustness against unseen threats. This
suggests that the proposed defense mechanism can retain practi-
cal effectiveness even in scenarios where the attacker’s strategy is
completely unknown.

Impact of Adversarial Object Removal Threshold 7. To
evaluate the effectiveness of the threshold 7~ derived from the
formulated optimization problem, we compare the defense per-
formance using the optimized value against several alternative
threshold values. In this experiment, we adopt the setup described
in Section 5.2, where the generative model is trained using adver-
sarial examples from all four attack methods: AdvLoc, BALiDAR,
AdvODbj, and AE-Morpher. The optimized threshold value derived
from training is 7~ = 0.08. Figure 5 shows the impact of varying
7 on detection performance across different attacks. Each curve
represents an individual attack, with detection rate (y-axis) plotted
against threshold values (x-axis). As shown, the value 7~ = 0.08
consistently yields the best overall performance, while both lower
and higher thresholds lead to reduced effectiveness. This demon-
strates the value of our joint optimization strategy for threshold
selection. Moreover, the results highlight the importance of tuning
7 to balance the trade-off between removing adversarial points and
preserving the geometric integrity of legitimate vehicle surfaces.

False Positives Generated by the Defense. As described in
Section 4.2, the second step of our defense is triggered when a point
cluster appears in front of the victim AV but no corresponding
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Figure 5: Defense performance under different values of
threshold 7.

bounding box is reported by the perception model. In practice,
benign objects such as roadside billboards may produce suspicious-
looking clusters and activate the defense. In this experiment, we
evaluate the false positives that may be introduced by our defense.
In our context, a false positive occurs when a non-vehicle object
(originally not detected by the perception model) is incorrectly
identified as a vehicle due to the defense mechanism. Specifically, we
use the CARLA simulator [14] to model two representative driving
scenarios: a T-junction road and a curved road, where common
roadside structures may trigger false detections (as illustrated in
Figure 6). CARLA is a widely used open-source simulation platform
for developing and testing autonomous driving algorithms. It offers
a high fidelity simulation environment with realistic road layouts
and dynamic traffic scenarios. For each scenario in Figure 6, we
examine three distinct street scenes with different surrounding
layouts and evaluate four types of roadside objects: advertising
billboard, bus shelter, traffic drum, and traffic barricade (as shown in
Figure 7). The AV’s speed is set to 25 km/h, and the initial distance
between the object and the AV is approximately 35 meters. We
employ PIXOR as the detection model, and the generative model
used is the same as that described in Section 5.2. Table 6 reports
the average false positive rate for each object type, defined as the
percentage of LiDAR frames in which the perception system based
on our defense incorrectly detects a non-existent front vehicle.
The results in Table 6 indicate that the defense successfully avoids
misidentifying benign objects in most LIDAR frames. While some
objects occasionally trigger false positives, the overall rate remains
low. Notably, such objects may also be misidentified as vehicles
even without the defense, depending on the LiDAR object detection
model, likely due to their LIDAR data resembling those of vehicles
when viewed from certain angles.

Runtime on Resource-Constrained Devices. We also eval-
uate the real-time performance of our defense on a resource-
constrained edge computing platform, specifically the NVIDIA Jet-
son AGX Orin. In this experiment, we consider two LiDAR object
detection models: PIXOR and PointPillars. For each model, we eval-
uate the defense against both the AdvLoc and BALiDAR attacks,
using the generative model trained in Section 5.2. The results show
that the average runtime (RT) for the complete detection pipeline,
which includes both our defense mechanism and the object detec-
tion model, is 0.12 seconds per frame with PIXOR and 0.09 seconds
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Figure 6: Two driving scenarios where common roadside
objects may trigger false detections. (a) T-junction; (b) Curved
road.

(O ™
z U S oy o
T a
-, &« —
1.2m 39m 0.8m 1.3m
(a) (b) (©) @

Figure 7: Roadside objects used in the false positive evalu-
ation. (a) Advertising billboard; (b) Bus shelter; (c) Traffic
drum; (d) Traffic barricade.

Table 6: False positive rate generated by the defense.

Advertising ~ Bus  Traffic  Traffic
billboard  shelter ~drum barricade
False positive 13 2.1 0.0 1.1

rate (%)

with PointPillars. These results demonstrate that the proposed de-
fense can meet real-time constraints, even on resource-constrained
edge computing platforms.

In addition to the above experiments, we conduct a case study
to evaluate the impact of the proposed defense on vehicle behavior.
Specifically, we integrate the defense mechanism into a full au-
tonomous driving stack within the CARLA simulator. The defense
module continuously monitors incoming LiDAR data, removes ad-
versarial points, and forwards the cleaned point cloud to the percep-
tion module. The resulting perception outputs are then passed to
the downstream planning and control modules. In this case study,
we simulate an AdvLoc attack using PIXOR as the detection model.
The results show that the attack is detected with low latency, en-
abling the AV to respond promptly, such as by initiating a lane
change, to maintain safe navigation.

6 Real-World Evaluation

In this section, we assess the effectiveness of our proposed defense
using a real-world LIDAR perception testbed, as shown in Figure 8.
The setup features a Velodyne VLP-32C LiDAR sensor (widely used
in commercial AVs) mounted 1.8 meters above the ground on the
vehicle’s roof. The sensor offers 32 channels and a 40° vertical field of
view. For object detection, we adopt the PIXOR model, and evaluate
the defense under two representative attack methods: AdvLoc and
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Figure 8: Real-world LiDAR perception testbed.

Table 7: Defense performance in different driving scenarios.

Scenario 1 Scenario 2 Scenario 3
Attack
DR(%) RT(s) DR(%) RT(s) DR(%) RT(s)
AdvLoc 933 0.048 90.0 0.044 86.7 0.045
BALIDAR 90.0 0.051 86.7 0.046 90.0 0.045

BALIDAR, which have been demonstrated effective in physical-
world environments. In both attack scenarios, a sedan is parked
in front of the testbed to act as the target vehicle. For the AdvLoc
attack, common cardboard pieces are deployed at specific positions
around the target vehicle to serve as adversarial objects. In the
BALIDAR setting, we follow the setup described in the original
study by placing a 0.4-meter-radius exercise ball on the vehicle to
act as the backdoor trigger.

Impact of the Driving Scenario. To assess the robustness of
our defense across diverse driving environments, we conduct evalu-
ations in three real-world scenarios, as illustrated in Figure 9. In this
evaluation, we apply the generative model and threshold 7~ learned
in Section 5.2 using the KITTI dataset. It is worth noting that the
KITTI dataset does not include LiDAR point clouds of the specific
sedan used as the target vehicle in this experiment. In each scenario,
the sedan is parked along the roadway while the LiDAR-equipped
victim vehicle approaches it. The placement of adversarial objects is
configured according to the respective attack strategy being tested.
For evaluation, we randomly select 30 successfully attacked LIDAR
frames per attack scenario, with the distance between the two ve-
hicles ranging from 10 to 40 meters. Table 7 reports the average
detection rates and runtime performance for both the AdvLoc and
BALIDAR attacks across the tested scenarios. Results show that our
defense consistently achieves high detection rates across different
physical-world conditions and adversarial configurations. Further-
more, the runtime remains low, demonstrating that our system
maintains real-time performance comparable to that achieved in
simulation environments.

Impact of the Target Vehicle Type. To further evaluate the
effectiveness of our defense in real-world scenarios, we examine its
performance across different types of target vehicles. Importantly,
our defense mechanism is designed to be applicable to any vehicle
type, provided the vehicle can be detected by the underlying LiDAR
object detection model (e.g., PIXOR or PointPillars). Since the de-
fense is typically deployed by the same manufacturer responsible
for training the detection model, both models can be trained using
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Figure 9: Different real-world scenarios for the AdvLoc and
BALIADR attacks. (a) and (d) show scenario 1; (b) and (e) show
scenario 2; (c) and (f) show scenario 3.

Adversarial

Objects Adversarial

Objects

get
Vehicle

Passing
Vehicle

(@ (b) (©
Figure 10: Real-world scenarios with different evaluation
settings. (a) Target vehicle is an SUV; (b) Target vehicle is a

van; (c) Scenario includes a passing vehicle near the target.

the same dataset. To validate this generalizability, we consider two
additional target vehicle types: a sport utility vehicle (SUV) and
a van. The real-world setups for these experiments are shown in
Figure 10a and Figure 10b, respectively. Here we consider the Ad-
vLoc attack. For training, the generative model incorporates data
from both the KITTI dataset and supplementary data of the SUV
and van, collected in real-world environments that are different
from those in Figure 10. For each vehicle type, the target is parked
on the road while the LiDAR-equipped victim AV approaches. We
randomly select 30 successfully attacked LiDAR frames within a dis-
tance range of 10 to 40 meters for evaluation. The defense achieves
average detection rates of 93.3% for the SUV and 80.0% for the van,
with corresponding runtimes of 0.046 and 0.047 seconds, thereby
demonstrating strong performance across varied vehicle types with
real-time efficiency.

Impact of the Passing Vehicle. We next examine how the
presence of additional road objects affects the performance of our
defense. In this experiment, we consider a scenario involving a pass-
ing vehicle, as illustrated in Figure 10c. The same generative model
used in the evaluation for Table 7 is employed here. We evaluate
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Table 8: Detection rate (%) when the target is in motion.

Speed  Scenario 1 Scenario 2 Scenario 3
25km/h 91.1 90.0 87.5
40 km/h 88.9 87.8 90.0

the defense against the AdvLoc attack by randomly selecting 30
successfully attacked LiDAR frames in which the distance between
the target vehicle and the victim AV ranges from 10 to 40 meters.
Despite the added complexity from the passing vehicle, our de-
fense achieves a detection rate of 90.0% with an average runtime of
0.442 seconds, demonstrating its robustness in dynamic real-world
environments.

Performance with Moving Vehicle. We also evaluate the per-
formance of our defense when both the victim AV and the target
vehicle are in motion. Specifically, we consider the BALiDAR at-
tack and examine three driving scenarios similar to those shown
in Figure 9. For each scenario, we evaluate two cases in which the
target vehicle moves at approximately 25 km/h and 40 km/h, re-
spectively, while the victim AV travels slightly faster in each case.
We use PIXOR as the detection model and apply the generative
model trained in Section 5.2. For each case, we repeatedly select
30 successfully attacked LiDAR frames and compute the average
detection rate. Table 8 presents the average detection rate for each
case. The results indicate that target vehicle motion has little impact
on the defense performance, primarily because each LiDAR frame
is processed independently by the defense mechanism.

7 Discussion

Other Attack Types. Although this paper primarily focuses on
vehicle hiding attacks, the proposed defense mechanism has the
potential to be adapted to other types of attacks by training the
generative model to estimate corresponding object surfaces. To
demonstrate its generality and adaptability, we consider the attack
proposed in [39], which can cause a LiDAR classification model
to misclassify pedestrians by placing adversarial objects around
them. To adapt the generative model in our defense mechanism to
this setting, we construct a set of training samples by extracting
pedestrian point clusters from the KITTI dataset and injecting ad-
versarial objects generated using the method in [39] into these clean
samples. These examples enable the generative model to learn how
to estimate pedestrian surfaces. Experimental results show that our
defense achieves an 88.9% success rate in this setting, highlighting
the generality and adaptability of the proposed approach.
Locations of Adversarial Objects. In our experiments, we
implement existing object-based LiDAR attacks by following the
settings described in their original papers. The derived location of
the adversarial object is typically around or on the target vehicle,
but not necessarily between the victim AV and the target. However,
placing an adversarial object between the two vehicles can obstruct
laser signals, resulting in missing points in the LiDAR returns for
the target vehicle and posing a more challenging scenario for de-
fense. To evaluate the defense performance under this condition,
we consider the AdvLoc attack, which derives adversarial object
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locations through an optimization process. While the original for-
mulation does not explicitly place objects between the victim AV
and the target, we modify the optimization by introducing a con-
straint that limits the search space to the region between the two
vehicles. For this evaluation, we use the generative model trained
under the setting described in Section 5.2 and employ PIXOR as
the detection model. We randomly select 60 LIDAR frames where
the distance between the two vehicles ranges from 10 to 50 meters.
The results show that our defense achieves an 86.7% detection rate
in this scenario, demonstrating its robustness even when the target
vehicle is partially occluded by the adversarial object.

8 Conclusion

This paper presents the first real-time defense mechanism against
object-based LiDAR attacks in autonomous driving. The proposed
mechanism is both detection model-agnostic and attack-agnostic.
By introducing a lightweight generative model with a dual-decoder
architecture and integrating it into a trigger-based defense pipeline,
our approach enables reliable vehicle surface estimation and effec-
tive adversarial object removal with minimal runtime overhead.
Unlike prior defenses that suffer from high latency or limited gen-
eralizability, our solution operates efficiently and remains robust
across a wide range of attack strategies and detection models. Ex-
tensive evaluations in both simulated and real-world environments
demonstrate that our defense achieves high detection accuracy
across multiple attack methods, while maintaining low false posi-
tive rates and minimal latency.
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