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ABSTRACT
Generating text adversarial examples in the hard-label setting is a
more realistic and challenging black-box adversarial attack prob-
lem, whose challenge comes from the fact that gradient cannot be
directly calculated from discrete word replacements. Consequently,
the effectiveness of gradient-based methods for this problem still
awaits improvement. In this paper, we propose a gradient-based
optimization method named LeapAttack to craft high-quality text
adversarial examples in the hard-label setting. To specify, LeapAt-
tack employs the word embedding space to characterize the seman-
tic deviation between the two words of each perturbed substitution
by their difference vector. Facilitated by this expression, LeapAt-
tack gradually updates the perturbation direction and constructs
adversarial examples in an iterative round trip: firstly, the gradient
is estimated by transforming randomly sampled word candidates
to continuous difference vectors after moving the current adversar-
ial example near the decision boundary; secondly, the estimated
gradient is mapped back to a new substitution word based on the
cosine similarity metric. Extensive experimental results show that
in the general case LeapAttack can efficiently generate high-quality
text adversarial examples with the highest semantic similarity and
the lowest perturbation rate in the hard-label setting.1
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1Code is available at https://github.com/machinelearning4health/LeapAttack.
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1 INTRODUCTION
Deep neural networks (DNNs) have performed outstandingly in
the natural language processing (NLP) tasks including text classifi-
cation [26] and natural language inference [1] recently. However,
it is observed that DNNs can be easily fooled by adversarial exam-
ples [11], and thus their robustness against adversarial attacks is
still in doubt despite their high accuracy. To reveal and improve the
robustness of DNNs for NLP, researchers have focused on the text
adversarial attack [19], which is the task of generating adversarial
examples with high semantic similarity by adding small perturba-
tion to original text samples to make DNNs change their correct
predictions into incorrect ones.

Existing studies on text adversarial attack can be classified into
two categories, i.e, white-box ones [9] and black-box ones [16, 18,
23]. The latter scenario is more challenging because attackers have
no access to model parameters. Early black-box methods work in
the soft-label setting, which allows attackers to access the prediction
probability distribution associated with each input. Recently, a more
realistic and difficult hard-label black-box setting raises more at-
tention, where attackers only know the top-1 prediction label instead
of distribution. Exisiting methods in the black-box setting usually
adopt (1) score-based greedy algorithms, (2) heuristic algorithms
such as the genetic algorithm (GA), or (3) gradient-based algorithms.
However, current techniques still fall short in the hard-label setting.
Firstly, the hard-label information is difficult for scored-based greedy
algorithms [16, 23] to distinguish the importance and effect of dif-
ferent word positions and substitutions during adversarial attacks
for they require soft-label prediction score distributions. Secondly,
relying on past adversarial examples to generate new ones, heuristic
algorithms [18] such as GA suffer from the threat of getting stuck in
the local optimum and consuming numerous victim model queries
due to the repetitive operations for all candidates and the fact that
inappropriate substitutions of past ones can continually remain

 

2307

https://github.com/machinelearning4health/LeapAttack
https://doi.org/10.1145/3534678.3539357
https://doi.org/10.1145/3534678.3539357
https://doi.org/10.1145/3534678.3539357


KDD ’22, August 14–18, 2022, Washington, DC, USA Muchao Ye et al.

in the new ones. Lastly, existing hard-label gradient-based algo-
rithms [25] use virtual random direction to estimate the gradient,
which has a potential problem that the sampled virtual directions
can just be mapped to partial candidates and make them unable to
fully use the embedding subspace expanded by all word candidates.

The aforementioned limitations of existing approaches stem
from the discrete nature of text data because gradient cannot be
directly calculated from discrete changes. In this paper, we aim to
explore this challenging yet rewarding research question: is it possi-
ble to further improve the effectiveness of gradient-based optimization
approach to improve the generation quality of adversarial examples
in the hard-label setting for discrete text data? To answer this ques-
tion, we propose a new method named LeapAttack. Compared to
existing methods, the main improvement of LeapAttack is that it
introduces an iterative round trip between discrete word candidates
and continous gradients by employing the word embedding space as
an auxiliary space as the bridge, allowing one adversarial candidate
freely moving, i.e., leaping, in the embedding space.

As shown in Figure 1, the round trip starts from the random
initialized adversarial candidate 𝑥 ′0 attained in step (1). In each it-
eration 𝑡 , LeapAttack firstly moves the current sample 𝑥 ′

𝑡−1 near
the decision boundary and gets 𝑥𝑡−1 as shown in step (2). For the
round trip shown in step (3), LeapAttack maps each discrete word
𝑤 to a high-dimensional vectorH(𝑤) given the introduced word
embedding spaceH . Consequently, the semantic deviation brought
by each substitution can be effectively characterized by the differ-
ence vectors between original and substitution words. Hence, it
maps each sampled word candidate to a difference vector inH and
selectively aggregates them into an estimated gradient based on
the feedback from the victim model. After that, each gradient turns
into a new replacement in 𝑥 ′𝑡 via the cosine similarity measure, and
the whole perturbation is represented by P𝑡 as a group of difference
vectors. The advantages of our method include that it does not rely
on past candidates and maintains only one candidate leaping in the
embedding space based on the gradient estimated from concrete
word replacements, avoiding the pitfall of inappropriate substitutions,
repetitive operations and virtual randomly sampled directions.

In short, our contributions are:

• LeapAttack relieves the inability of distinguishing semantic
deviation and the dependence of existing methods on past
adversarial examples in the hard-label setting by using the
semantic information hidden in the word embedding space,
which can improve optimization quality and efficiency.
• We improve the effectiveness of utilizing the gradient-based
optimization in discrete text data by designing a novel mech-
anism that can interchange discrete substitutions and con-
tinuous vectors. It expresses discrete substitutions with dif-
ference vectors for gradient estimation and maps each gradi-
ent into a new discrete word based on the cosine similarity
measure, fully utilizing the semantic embedding of all word
candidates for the task.
• Experimental results on eight datasets demonstrate that Lea-
pAttack can generate adversarial examples with the highest
semantic similarity and lowest perturbation rate in most
cases, alleviating previous limitations.

𝑥

𝑥!"
𝑥#"

"𝑥!

𝑮

(1)

(2)

Decision 
Boundary

Word Embedding 
Space

𝑥$"

𝑥%"

…𝐏!

…𝐏"

𝐏#

𝐏$

Sampled Perturbation 
for Gradient Estimation

Replacing Original 
Word Back

Gradient (G)

Candidate Sample

Perturbation

Mapping Gradient to 
a Candidate(3)

Figure 1: Overview of LeapAttack. After random initializa-
tion in step (1), in each iteration LeapAttack moves the cur-
rent sample closer to the decision boundary in step (2) and
interchanges discrete substitutions and continuous vectors
for gradient estimation and word replacement in step (3).

2 METHODOLOGY
2.1 Hard-Label Text Adversarial Attack
In this paper, we focus on the hard-label black-box text adversarial
attack, where attackers can only use the predicted label 𝑓 (𝑥) from
the victim model 𝑓 to construct adversarial example for each input
text sample 𝑥 . Let 𝑥 = [𝑤 (1) ,𝑤 (2) , · · · ,𝑤 (𝑛) ], where 𝑤 (𝑖) is the
𝑖-th word, and 𝑛 is the number of words. For each 𝑥 , its associated
ground truth label is 𝑦. In this task, attackers conduct attacks by
using the samples that can be correctly classified by 𝑓 , i.e., 𝑓 (𝑥) = 𝑦.

When constructing an adversarial example, each word𝑤 (𝑖) ∈ 𝑥
will be replaced by its synonym 𝑠 (𝑖) in the predefined synonym set
S(𝑤 (𝑖) ), which includes𝑤 (𝑖) itself. After several replacements, we
say 𝑥 ′ = [𝑠 (1) , 𝑠 (2) , · · · , 𝑠 (𝑛) ] becomes an adversarial example if it
misleads 𝑓 toward a wrong prediction result, i.e., 𝑓 (𝑥 ′) ≠ 𝑓 (𝑥).

We denote Sim(𝑥, 𝑥 ′) as an auxiliary function calculating the
semantic similarity between 𝑥 and any adversarial example 𝑥 ′. The
ultimate goal of text adversarial attack is to generate an optimal
adversarial example 𝑥∗ that has the highest semantic similarity with
the original sample 𝑥 among all valid adversarial examples [19].
Thus, the output 𝑥∗ of this task is defined as

𝑥∗ = max
𝑥 ′

Sim(𝑥, 𝑥 ′), 𝑠 .𝑡 . 𝑓 (𝑥 ′) ≠ 𝑓 (𝑥). (1)

2.2 Framework of LeapAttack
Figure 1 shows the overview of the proposed LeapAttack, which first
randomly initializes an adversarial example 𝑥 ′0 for the original text
𝑥 and then moves it closer to the decision boundary via conducting
word replacement based on the gradient direction aggregated from
all explored difference vectors.

2.2.1 Initialization. Due to the unavailability of soft-label scores,
in the hard-label setting we need to use random initialization to
ensure a feasible solution first before we are assured to keep improv-
ing the adversarial example [5–7, 18]. Since random initialization
is generally used in the hard-label adversarial attack in various
domains [5–7, 18] to attain an initial solution, for each input 𝑥 we
firstly find an initial adversarial candidate𝑥 ′0 such that 𝑓 (𝑥

′
0) ≠ 𝑓 (𝑥)

by conducting textual random initialization following [18].
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If 𝑥 ′0 exists, we now introduce how we prepare a gradient-based
optimization framework for this discrete problem. For each word
𝑤 (𝑖) in 𝑥 , we introduce a pretrained word embedding spaceH (i.e.,
Counter-Fitted Word Vectors [21]) to obtain its word embedding

e𝑖 = H(𝑤 (𝑖) ) = [𝑒 (𝑖,1) , 𝑒 (𝑖,2) , · · · , 𝑒 (𝑖,𝑚) ]T, (2)

where e𝑖 ∈ R𝑚 and 𝑚 is the dimension of the word embedding
space. As a result, we can get an embedding matrix E ∈ R𝑚×𝑛 for 𝑥
and similarly E𝑡 ∈ R𝑚×𝑛 for sample 𝑥 ′𝑡 inH in iteration 𝑡 . Based
on E and E𝑡 , we express the perturbation at any iteration 𝑡 as a
perturbation matrix P𝑡 that consists of 𝑛 difference vectors

P𝑡 = E𝑡 − E = [p(𝑡 )1 , · · · , p(𝑡 )𝑛 ] ∈ R𝑚×𝑛, (3)

where p(𝑡 )
𝑖

is the difference vector for the 𝑖-th word at iteration 𝑡 .
Such an expression allows us to represent the semantic deviation of
different candidate words as difference vectors inH . Most impor-
tantly, we are given a chance to represent different words by the
continuous embedding values, and the search problem of finding
good replacements can be guided by the gradient of the current
word calculated in the embedding spaceH .

2.2.2 Gradient-Based Optimization for Text. Now we introduce
how we make gradient-based optimization feasible in text data to
optimize the semantic similarity of generated adversarial examples,
which is a two-step “round trip” in𝑇 iterations as shown in Figure 1,
where 𝑇 is the total iteration number. That is, estimating the gradi-
ent from the given sampled word candidates first, and mapping the
continuous gradient to a substitute word afterwards. The process
that we obtain the adversarial example 𝑥 ′𝑡 (1 ≤ 𝑡 ≤ 𝑇 ) in the 𝑡-th
iteration given the output 𝑥 ′

𝑡−1 in previous iteration is as follows.
(1) Moving Closer to the Decision Boundary. We will ap-

proximate the gradient by the Monte Carlo estimate [20], which
is valid when the text sample is at the boundary. Thus, to get an
accurate estimation of the gradient, the first thing that we need to
do is to move 𝑥 ′

𝑡−1 = [𝑤 (1)
𝑡−1,𝑤

(2)
𝑡−1, · · · ,𝑤

(𝑛)
𝑡−1] closer to the decision

boundary. Due to the discrete nature of text data, the commonly-
used binary search approach in image adversarial attack is not
applicable here. Hence, we choose to continually put original words
back to 𝑥 ′

𝑡−1 to move it closer to the decision boundary [18]:

• Replace each word 𝑤 (𝑖)
𝑡−1 in 𝑥 ′

𝑡−1 by the original word 𝑤 (𝑖) .
If the modified sample is still adversarial, we calculate the
corresponding similarity score 𝑠𝑖𝑚𝑖 by the auxiliary function.
• Keep replacing the original words𝑤 (𝑖) back to𝑤 (𝑖)

𝑡−1 in the
descending order of semantic similarity scores 𝑠𝑖𝑚𝑖 ’s and
stop just before the new sample 𝑥𝑡−1 is not adversarial.

Through the process described above, we discover the original
words that maintain important original semantics and still keep the
sample adversarial. We then gradually replace these words back to
the adversarial example 𝑥 ′

𝑡−1. This process enables us to get a new
adversarial example 𝑥𝑡−1 closer to the decision boundary for 𝑥𝑡−1
has more common words with 𝑥 , which is beneficial to estimate a
more accurate gradient.

(2) Estimating the Gradient. After we get a sample 𝑥𝑡−1 =

[�̃� (1)
𝑡−1, · · · , �̃�

(𝑛)
𝑡−1] that is closer to the decision boundary, the next

step is to estimate the gradient direction for updating the pertur-
bation based on the discrete substitution choices. By gradient, we

mean the gradient with respect to the following function

𝑄 (𝑥𝑡−1) = 𝑓𝑦′ (𝑥𝑡−1) − 𝑓𝑦 (𝑥𝑡−1), 𝑠 .𝑡 . 𝑦′ ≠ 𝑦, (4)

where 𝑓 classifies 𝑥𝑡−1 to another class 𝑦′. 𝑓𝑦′ (𝑥𝑡−1) and 𝑓𝑦 (𝑥𝑡−1)
are the soft-label scores corresponding to the class 𝑦′ and 𝑦 given
𝑥𝑡−1. Maximizing Eq. (4) can keep 𝑥𝑡−1 outside of the decision
boundary, and we want the next adversarial example to leap out of
the decision boundary in the fastest direction, so we solve Eq. (4)
by gradient descent. However, in the hard-label setting, we only
know whether𝑄 (𝑥𝑡−1) > 0 or𝑄 (𝑥𝑡−1) ≤ 0. Thus, suppose the 𝑗-th
word �̃� ( 𝑗)

𝑡−1 ≠ 𝑤 ( 𝑗) , we estimate the gradient ∇𝑄 (𝑥𝑡−1) at �̃� ( 𝑗)𝑡−1 by
mapping each sampled substitution into a difference vector inH :

• Sample a candidate word 𝑠 ( 𝑗)
𝑙
∈ S(𝑤 ( 𝑗) ) in the synonym set

and get a sample 𝑥tem = [�̃� (1)
𝑡−1, · · · , 𝑠

( 𝑗)
𝑙

, · · · , �̃� (𝑛)
𝑡−1] whose

only difference with 𝑥𝑡−1 is that it replaces �̃� ( 𝑗)
𝑡−1 by 𝑠

( 𝑗)
𝑙

.
The deviation between the explored direction and exist-
ing direction is represented by the difference vector d( 𝑗)

𝑙
=

H(𝑠 ( 𝑗)
𝑙
) − H (�̃� ( 𝑗)

𝑡−1) ∈ R
𝑚 .

• Query the victim model with 𝑥tem as the input. If 𝑥tem is still
adversarial, i.e.,𝑄 (𝑥tem) > 0, we denote this useful direction
with a weight score corresponding to this replacement as
𝜇𝑙 = 1, and otherwise, 𝜇𝑙 = −1 for 𝑄 (𝑥tem) ≤ 0.
• Repeat the previous two steps 𝑘 times. We calculate the
average score of all 𝜇𝑙 as 𝜇, and (𝜇𝑙 −𝜇) represents the weight
for whether to adopt this deviation, and the gradient is

g𝑗 =
1

𝑘 − 1

𝑙∑
(𝜇𝑙 − 𝜇) · d

( 𝑗)
𝑙
∈ R𝑚 . (5)

The sum in Eq. (5) is divided by 𝑘−1 to get an unbiased estimator
for the gradient [5].We repeat the gradient estimation step above for
each word in 𝑥𝑡−1 that is not equal to the corresponding original
word in 𝑥 . For the words that are not replaced, we denote the
estimated gradient as a zero vector 0 ∈ R𝑚 . Finally, we get a group
of gradients for all words in 𝑥𝑡−1 as G = [g1, · · · , g𝑛] as the final
estimation of ∇𝑄 (𝑥𝑡−1).

(3) Updating the Adversarial Example. Given the gradients
G, we expect the deviation between �̃� (𝑖)𝑡 and the 𝑖-th word𝑤 (𝑖)𝑡 in
the new sample 𝑥 ′𝑡 is in the direction of g𝑖 . However, we have only
a set of discrete choices S(𝑤 (𝑖) ) as the candidates of𝑤 (𝑖)𝑡 for 𝑥 ′𝑡 in
the text adversarial attack. In other words, the deviation between
any candidate word in S(𝑤 (𝑖) ) and existing word �̃� (𝑖)

𝑡−1 would not
completely align with the gradient direction g𝑖 . To resolve this
conundrum due to the discrete distribution of candidates in the
embedding space, we turn to the cosine similarity to map the con-
tinuous g𝑖 back to a discrete word for each �̃� (𝑖)

𝑡−1 in 𝑥𝑡−1. If g𝑖 = 0,
the 𝑖-th word𝑤 (𝑖)𝑡 = �̃�

(𝑖)
𝑡−1 in the new sample 𝑥 ′𝑡 , and otherwise,

𝑤
(𝑖)
𝑡 = arg max

𝑠 (𝑖 ) ∈S(𝑤 (𝑖 ) )
cos(g𝑖 ,H(𝑠 (𝑖) ) − H (�̃� (𝑖)𝑡−1)), (6)

where cos(a, b) = a·b
| |a | | · | |b | | is the cosine similarity measure.

The advantage of using cosine similarity is that it normalizes
two input vectors and only considers their deviation of direction in
the high-dimensional space. As a result, it can flexibly harness the
gradient information to search the word among the discrete choices
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Algorithm 1: LeapAttack

Inputs: Text sample to be attacked 𝑥 = [𝑤 (1) , · · · ,𝑤 (𝑛) ],
victim model 𝑓 , word embedding spaceH , iteration
number 𝑇 , and sample number 𝑘 .
Output: Adversarial example 𝑥∗.
Conduct random initialization to see if there exists an initial
adversarial example 𝑥 ′0 by continually replacing each
original word by a random synonym

if 𝑥 ′0 exists then
Set the iteration counter 𝑡 = 1;
while t ≤ T do

Attain 𝑥𝑡−1 by moving 𝑥 ′
𝑡−1 closer to the decision

boundary;
Estimate the gradient at 𝑥𝑡−1 for each perturbation
by Eq. (5) via 𝑘 samples;

Attain 𝑥 ′𝑡 by updating each perturbed word to a new
candidate word by Eq. (6), 𝑡 ← 𝑡 + 1;

end
Return the adversarial example having the highest
semantic similarity with 𝑥 ;

end
Return Null;

in S(𝑤 (𝑖) ). By selecting every new word 𝑤 (𝑖)𝑡 in this fashion, we
will replace each original word 𝑤 (𝑖) by 𝑤

(𝑖)
𝑡 to construct 𝑥 ′𝑡 . We

adopt an early stopping strategy when existing replacements𝑤 (𝑖)𝑡

have already made 𝑥 ′𝑡 adversarial. After that, we finally get a new
sample 𝑥 ′𝑡 = [𝑤 (1)𝑡 , · · · ,𝑤 (𝑛)𝑡 ] as the output in the 𝑡-th iteration
and a new perturbation matrix P𝑡 .

2.3 Algorithm
The iterative algorithm of how LeapAttack crafts text adversarial
examples in the hard-label setting is summarized in Algorithm 1.
After that, LeapAttack takes the adversarial example having the
highest semantic similarity with 𝑥 as the final output 𝑥∗.

3 EXPERIMENTS
3.1 Experimental Settings
Datasets. In experiments we adopt the following text datasets col-
lected for text classification and natural language inference: (1)
MR [22], a movie review dataset for binary sentiment classification;
(2) AG [26], a 4-class news classification dataset; (3) Yahoo [26], a
questions-and-answers topic classification dataset with 10 classes;
(4) Yelp [26], a binary sentiment classification one; (5) IMDB [17], an-
other binary sentiment classification dataset collected from movie
reviews; (6) SNLI [1] and (7) MNLI [24], two datasets collected for
the natural language inference task; and (8) mMNLI, a variant of the
MNLI dataset with mismatched premise-hypothesis pairs. In our
experiments, we follow the setting of [13, 18, 25], taking the same
1,000 test samples of each dataset to conduct adversarial attacks.
Victim Models.We follow existing hard-label adversarial attack
methods and adopt the following widely used NLP models as victim
models: BERT [8], WordCNN [14], and WordLSTM [12]. The model

parameters of the trained models are accessible from the work
of [18], and the victim models just output the top-1 prediction.
Baselines. The adopted six baseline methods are all proposed for
the black-box text adversarial attack. For the methods that are
originally proposed in the soft-label setting, their inputs are the
boolean hard-label scores for fair comparison. The baselines include:
(1) TextFooler [13], a method which replaces the original words
in the order of position importance scores, and the replacement
for each original word is determined by the prediction probability
change that each candidate word brings; (2) PWWS [23], a method
ranks the order of original words and selects the corresponding
candidate by an improved saliency score; (3) TextBugger [16], an-
other method that uses the soft-label saliency score for position
ranking and substitution; (4) DeepWordBug [10], an early work
on text adversarial attack which also employs the saliency score of
each word to determine the attack order and replacement; (5) Tex-
tHoaxer [25], a gradient-based hard-label method which estimates
the gradient directly from the virtual randomly sampled directions
in the embedding space rather than concrete candidate words; and
(6) HLGA [18], a hard-label method which employs the genetic
algorithm to reduce the search space for optimizing the semantic
similarity of adversarial examples. It generates a large population of
adversarial candidates first, and then conducts crossover, mutation,
and selection operations among them to search the best one.

Different from other types of adversarial attacks, no matter in im-
age [5–7] or text [18] data, one necessary condition for conducting
hard-label adversarial attack is having initial adversarial examples
by random initialization first. For fair comparison, we adopt the
textual random initialization [18] for all methods in experiments.
It keeps replacing original words with random synonyms until it
finds an initial adversarial example, which guarantees to find the
upper bound of success attack rate. Since this step decides whether
an adversarial example can be found for an original sample in at-
tacking and later steps are adapted from baselines for semantic
similarity optimization, it leads to the same attack success rate with
the upper bound value after the adversarial attack for all methods.
EvaluationMetrics. The evaluation metrics employed to quantify
the adversarial example quality include semantic similarity (Sim)
and perturbation rate (Pert). Following previous works [13, 18],
the semantic similarity is calculated by putting the original text
sample and generated adversarial example into the Universal Se-
quence Encoder [4], whose maximum value is 1, and the higher the
better. The perturbation rate is the ratio of changed words in the
generated sample compared to the original text sample, and the
lower the better. In addition, we also count the query number to
measure attack efficiency.
Implementation Setting. LeapAttack is implemented with an
NVIDIA Tesla P100 GPU. The used word embedding space H is
from Counter-Fitted Word Vectors [21]. The synonym set for each
word has a size of 50 and is the same as baselines [18]. We set the
number of sampled synonyms 𝑘 = 5 and iteration number 𝑇 = 100.

3.2 Experimental Results
3.2.1 Comparison on Semantic Similarity and Perturbation Rate.
Since the same random initialization technique leads to the same
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Table 1: Comparison of semantic similarity (Sim) and perturbation rate (Pert) when attacking against text classificationmodels.
Acc stands for prediction accuracy after adversarial attack, which is determined by the random initialization step and the same
for different adversarial attack methods. The original accuracy is indicated by parentheses.

Dataset Method BERT WordCNN WordLSTM
Acc (%) Sim (%) Pert (%) Acc (%) Sim (%) Pert (%) Acc (%) Sim(%) Pert (%)

MR

TextFooler

1.0 (← 85.0)

57.1 16.278

0.7 (←76.5)

58.7 15.430

0.7 (← 78.0)

56.7 16.440
PWWS 61.1 15.945 61.6 15.394 61.1 16.140

TextBugger 61.9 15.354 64.3 14.746 63.0 15.023
DeepWordBug 61.6 15.180 63.1 14.960 62.2 15.265
TextHoaxer 67.3 11.812 68.4 12.076 67.7 12.320

HLGA 64.8 13.360 66.6 12.976 65.4 13.574
LeapAttack 68.0 10.420 68.6 10.742 68.1 10.959

AG

TextFooler

2.8 (← 93.0)

58.0 19.070

1.4 (← 90.4)

68.7 15.233

5.7 (← 90.2)

60.5 18.569
PWWS 58.5 18.830 70.3 14.963 60.9 19.147

TextBugger 61.7 17.162 72.1 13.788 63.9 16.814
DeepWordBug 61.0 17.150 72.3 13.808 64.1 17.261
TextHoaxer 63.8 15.721 74.2 12.493 64.6 16.122

HLGA 68.9 12.750 78.2 10.250 70.9 12.864
LeapAttack 69.9 10.852 78.9 8.987 71.8 11.208

Yahoo

TextFooler

0.5 (← 79.1)

64.9 8.926

0.8 (← 71.1)

71.5 9.225

1.9 (← 73.7)

61.3 10.290
PWWS 65.2 8.652 72.5 9.228 63.5 10.235

TextBugger 68.1 7.820 73.9 8.617 65.0 9.620
DeepWordBug 67.1 7.967 74.5 8.588 64.7 9.171
TextHoaxer 70.9 6.726 75.0 7.616 67.2 8.396

HLGA 71.6 5.865 76.2 6.492 68.4 6.999
LeapAttack 72.0 4.851 78.2 5.629 69.6 5.952

Yelp

TextFooler

5.2 (← 96.5)

69.6 10.979

0.6 (← 92.9)

77.9 9.688

3.2 (← 94.8)

77.2 9.134
PWWS 71.4 10.778 78.6 9.815 78.6 8.929

TextBugger 73.1 9.994 80.1 9.033 79.9 8.370
DeepWordBug 72.9 10.007 80.2 9.052 79.8 8.264
TextHoaxer 74.6 9.271 81.3 8.543 80.8 7.942

HLGA 78.4 7.081 83.8 6.675 83.0 6.166
LeapAttack 80.5 5.985 86.2 5.845 84.9 5.484

IMDB

TextFooler

0.1 (← 90.3)

82.7 5.734

0.0 (← 87.8)

88.6 4.746

0.3 (← 89.3)

87.3 4.656
PWWS 82.6 5.868 89.4 4.813 87.9 4.766

TextBugger 83.9 5.416 89.9 4.510 88.5 4.379
DeepWordBug 84.2 5.187 89.9 4.360 88.7 4.385
TextHoaxer 85.3 4.860 90.2 4.268 89.1 4.098

HLGA 87.5 3.307 91.3 3.001 90.1 2.916
LeapAttack 89.3 2.894 92.9 2.881 91.3 2.681

prediction accuracy under the adversarial attack, the goal of hard-
label text adversarial attack is to improve the semantic similar-
ity and lower the perturbation rate. From Table 1, for one thing,
our method can generate optimized adversarial examples with the
highest semantic similarity in all cases for text classification mod-
els against varied lengths in different datasets. For a dataset with
short text samples like AG, LeapAttack increases the average se-
mantic similarity by 1.0%, 0.7%, and 0.9% compared to the second
best method when attacking BERT, WordCNN, and WordLSTM,
respectively. For a dataset with long ones like Yelp, LeapAttack can
increase the average semantic similarity by 2.1%, 2.4%, and 1.9%
compared to the second best method when attacking these three
models respectively. For another, it is also noteworthy that LeapAt-
tack always achieves the lowest perturbation rate in Table 1. For

instance, the perturbation rate of LeapAttack drops by up to 1.898%,
1.263%, and 1.656% compared to the second best method in AG
when it attacks BERT, WordCNN, and WordLSTM, respectively. In
addition, from Table 2, when attacking natural language inference
models LeapAttack, always attains the lowest perturbation rate
and has comparatively high semantic similarity in all cases, which
further corroborates that LeapAttack generally crafts high-quality
text adversarial examples in the hard-label setting.

Compared to the baselines, our improvement results from the fol-
lowing aspects. Firstly, in each iteration LeapAttack moves current
sample to the decision boundary by replacing original words back,
which is contributory to lowering the perturbation rate. Addition-
ally, it characterizes different candidates by their word embeddings.
The sampled directions used for gradient estimation are obtained
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Table 2: Comparison of semantic similarity and perturbation rate when attacking against a natural language inference model
(BERT).

Method SNLI MNLI mMNLI
Acc (%) Sim (%) Pert (%) Acc (%) Sim (%) Pert (%) Acc (%) Sim (%) Pert (%)

TextFooler

1.3 (← 89.1)

29.7 20.043

2.9 (← 85.1)

42.6 16.455

1.7 (← 82.1)

43.7 16.035
PWWS 31.9 20.018 44.7 16.441 45.9 16.063

TextBugger 33.2 19.312 47.2 15.208 48.1 15.055
DeepWordBug 33.4 19.189 46.8 15.262 47.4 15.248
TextHoaxer 38.9 16.414 53.2 12.642 54.7 12.423

HLGA 36.6 18.158 50.3 14.152 51.8 13.822
LeapAttack 36.2 15.946 51.5 11.946 53.2 11.341
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Figure 2: (a-e) Semantic similarity (↑) and (f-j) perturbation rate (↓) comparison w.r.t. query number between HLGA and Leap-
Attack against BERT.

Table 3: Performance comparison given the query number
when TextHoaxer achieves convergence against BERT.

Dataset Method # Query Sim (%) Pert (%)

MR TextHoaxer 800 67.3 11.812
LeapAttack 750 68.0 10.420

AG
TextHoaxer 1,400 63.8 15.721

LeapAttack 1,400 68.8 12.420
2,572 69.9 10.852

Yahoo
TextHoaxer 1,500 70.9 6.726

LeapAttack 1,500 70.4 5.760
1,812 72.0 4.851

Yelp
TextHoaxer 1,381 74.6 9.271

LeapAttack 1,381 77.1 8.099
2,908 80.5 5.985

IMDB
TextHoaxer 1,416 85.3 4.860

LeapAttack 1,416 86.7 4.201
2,795 89.3 2.894

by mapping the candidate words to embeddings rather than vir-
tual random vectors, which can take into consideration the whole

candidate set. Besides, the gradient used for word replacement is
selectively merged from successful perturbation explorations and
mapped back to a word by cosine similarity, which helps discover
words leading to higher semantic similarity with high flexibility.

3.2.2 Comparison on Attack Efficiency. The results above show
that HLGA is a strong baselines in the hard-label setting. Since
efficiency is also crucial in evaluating the attack performance, we
further compare LeapAttack with HLGA on the query number that
they require to achieve convergence. Without loss of generality,
we compare the query number in the case of attacking BERT on
five text classification datasets, as shown in Figure 2. These fig-
ures demonstrate that the number of queries that HLGA takes to
achieve convergence is 2.54, 2.77, 3.46, 3.59, and 3.58 times that of
LeapAttack in MR, AG, Yahoo, Yelp, and IMDB, respectively, which
is because LeapAttack does not rely on past adversarial candidates
and optimizes based on only one candidate. The result also shows
that LeapAttack can perform well even when the number of queries
is relatively limited, which indicates that LeapAttack maintains its
good performance even in the scenario where victim models limit
the number of queries. This is a common constraint for existing
commercial deep learning-based NLP platforms such as Microsoft
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Table 4: Comparison results of attacking models which defend with adversarial training.

Dataset Method WordCNN WordLSTM
Acc (%) Sim (%) Pert (%) Acc (%) Sim(%) Pert (%)

AG

TextFooler

6.1 (← 92.4)

71.00 10.92

7.3 (← 94.3)

68.01 12.13
PWWS 71.84 10.87 68.79 12.09

TextBugger 73.51 10.03 71.33 10.95
DeepWordBug 73.66 9.96 71.04 10.98
TextHoaxer 76.42 7.98 74.51 8.13

HLGA 69.78 10.84 66.71 12.06
LeapAttack 79.15 6.77 77.29 7.12

IMDB

TextFooler

6.3 (← 87.2)

83.50 5.89

10.3 (← 89.3)

84.10 4.08
PWWS 83.99 5.90 84.85 4.09

TextBugger 84.55 5.61 85.40 3.85
DeepWordBug 84.74 5.58 85.50 3.87
TextHoaxer 85.21 5.55 86.50 3.19

HLGA 82.93 5.89 83.61 4.09
LeapAttack 88.69 3.86 89.14 2.59

Table 5: Influence on the adversarial attack performance of the number of samples 𝑘 when attacking WordLSTM.

𝑘
MR AG Yahoo Yelp IMDB

Sim (%) Pert (%) Sim (%) Pert (%) Sim(%) Pert (%) Sim (%) Pert (%) Sim (%) Pert (%)
3 67.9 10.774 71.8 11.045 69.6 5.670 85.2 5.309 91.5 2.719
5 68.1 10.959 71.8 11.208 69.6 5.952 84.9 5.484 91.3 2.681
7 68.0 11.061 71.7 11.423 69.8 5.814 85.2 5.455 91.4 2.790
10 68.7 10.920 71.3 11.591 69.6 6.036 84.9 5.549 91.4 2.808

Azure Text Analytics, where users can only request 5,000 times
monthly for free. Taking the query limits into consideration, our
attack method is more applicable to the robustness evaluation of
real-world systems.

We further compare LeapAttack with TextHoaxer, a gradient-
based method proposed to achieve fast convergence to reduce the
query number, on attack efficiency. Without loss of generality, in
Table 3, we show the query number for TextHoaxer to converge
and its corresponding performance against BERT. LeapAttack gen-
erally attains better performance given the budget number when
TextHoaxer converges, and its performance still greatly improves
during getting to the convergence. Such results indicate that the
round trip process of LeapAttack can help enhance the generation
quality of gradient-based methods with high efficiency by using
the full set of candidates for gradient estimation compared to the
virtual random directions used in TextHoaxer.

3.2.3 Comparison on Attacking Existing Defense Mechanism. Since
existing NLP models sometimes adopt defense mechanism for ro-
bust prediction, we further compare the attack performance of dif-
ferent methods when the victim model is trained with HotFlip [9],
which is an adversarial training technique in text data. Due to the
availability of implementation code of [28], we compare the at-
tack performance on attacking adversarially trained WordCNN and
WordLSTM on AG and IMDB. The results shown in Table 4 indicate
that despite the introduction of defense mechanism, LeapAttack
consistently generates text adversarial examples with the highest

Table 6: Ablation study results on five datasets.

Dataset Method Sim (%) Pert (%)

MR

Random Initialization 18.0 38.942
w/o Moving Bdy 63.5 12.852

w/o Grad 62.2 13.013
LeapAttack 68.6 10.742

AG

Random Initialization 30.4 43.853
w/o Moving Bdy 69.9 15.464

w/o Grad 70.5 13.311
LeapAttack 78.9 8.987

Yahoo

Random Initialization 27.5 32.796
w/o Moving Bdy 68.4 10.890

w/o Grad 71.9 8.446
LeapAttack 78.2 5.629

Yelp

Random Initialization 17.3 39.014
w/o Moving Bdy 59.4 18.279

w/o Grad 78.3 9.048
LeapAttack 86.2 5.845

IMDB

Random Initialization 34.2 31.270
w/o Moving Bdy 69.1 13.639

w/o Grad 89.1 4.459
LeapAttack 92.9 2.881

semantic similarity and lowest perturbation rate in all cases, which
further verifies its broad applicability.

3.2.4 Ablation Study. Furthermore, we investigate the influence of
the number of samples 𝑘 on the adversarial attack performance to
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Table 7: Generated adversarial text by LeapAttack. The sub-
stituted original word is strikethroughed, and the replace-
ment is the following one.

Adversarial Example Change of
Prediction

MR: It’s weird, wonderful ravishing, and
not necessarily for kids.

Positive →
Negative

AG: Brockton upset makes Waltham ’s day
jours. Waltham – Paul Mayberry was drip-
ping, Luis Cotto was weeping, and Alex
Russo was kneeling on the sideline · · ·

Sports →
World

Yelp: Great buffet. Lots of selections. The
prime rib was delicious loverly. It was worth
the 30 dollars.

Positive →
Negative

evaluate the gradient estimation design. Without loss of generality,
we change 𝑘 from 3 to 10 when we attack WordLSTM on five text
classification datasets. As shown in Table 5, the number of samples
does not have a significant influence on the adversarial attack per-
formance with respect to semantic similarity and perturbation rate.
These results demonstrate that LeapAttack can maintain stable ad-
versarial attack performance with different 𝑘 , indicating the design
of LeapAttack is reasonable for the gradient estimation.

In addition, without loss of generality, we further conduct an ab-
lation study to substantiate the optimization design on five datasets
when attacking WordCNN. The baseline in the ablation study is
the initial adversarial examples output by the random initialization.
Besides the random initialization scenario, we also consider two
variants of the proposed LeapAttack.

In the first scenario (w/o Moving Bdy), we estimate the gradient
without the step of moving the adversarial example closer to the
decision boundary. In the second scenario (w/o Grad), we randomly
select a word as the replacement after moving near the decision
boundary without using the estimated gradient. The final scenario
is the designed LeapAttack. As shown in Table 6, the first scenario
shows if we do not estimate the gradient in a location near the deci-
sion boundary, the estimated gradient will become inaccurate and
mislead the optimization, leading to worse performance. As for the
second scenario, it shows that the adversarial example construction
will get sub-optimal if we do not harness the gradient information
to guide the substitution selection. Thus, the designed mechanisms
in LeapAttack are reasonable.

3.2.5 Case Study. In Table 7, we also list some adversarial examples
generated by LeapAttack, which demonstrate that it has the ability
of fooling victim models by appropriate substitutions. For instance,
when people read the adversarial example of MR in Table 7 which
replaces “wonderful” by “ravishing”, they usually will not think
these two sentences have much semantic difference.

4 RELATEDWORK
4.1 Image Adversarial Attack
Adversarial attack attracts great interest due to the observation that
image classification DNNs can be fooled by adversarial examples
despite their superior performance [2, 3, 11, 15, 27]. For example,

Goodfellow et al. [11] find that DNNs can be easily fooled when
attackers add small perturbation to the original test image in the
image recognition task. Early image adversarial attack works relies
on the use of model parameter gradients to generate adversarial
examples, which are termed “white-box” adversarial attack. For ex-
ample, Kurakin et al. [15] get the adversarial examples in an iterative
framework where the perturbation added on the original images in
each iteration is calculated by the gradient backpropagated from
the cross-entropy cost function. However, due to the previous unre-
alistic assumption on parameter gradients, recent image adversarial
attack works shift to the hard-label black-box setting, where the
attackers only have the knowledge of the top-1 predicted label
from the victim model. For this setting, exemplary representative
methods include Sign-OPT [7] and HopJumpSkipAttack [5]. For
Sign-OPT, it formulates the hard-label image adversarial attack
problem as a gradient-based optimization problem in the continu-
ous pixel space, which is to find a direction in the high-dimensional
pixel space such that in that direction the designed method can
generate adversarial examples that looks most similar to the orig-
inal samples. As for HopSkipJumpAttack, it is a gradient-based
framework that uses the Monte Carlo estimate of the gradient to
guide the search of image adversarial examples.

Although these gradient-based methods work well in image data,
they cannot be applied in our problem for they fail to handle discrete
text data. Firstly, they both rely on the binary search procedure to
get adversarial examples close to the decision boundary. However, it
cannot be applied in text because text lack the continuous property
of image pixels and the candidate samples only distribute in certain
places in the high-dimensional word embedding space. Secondly,
when estimating the gradient, image adversarial attack methods
assume that they can sample the perturbation direction anywhere
without limitation, but this operation is inapplicable in text because
the selection of word perturbation is discrete. Additionally, these
image adversarial attack methods simply add the gradient to the
perturbed image after getting the estimated gradient, but the calcu-
lated continuous gradient may be meaningless in text data if it does
not match any specific candidate. As for LeapAttack, it (1) abandons
binary search and moves current adversarial examples closer to the
decision boundary by putting original words back, (2) bridges the
gap caused by the discrete word choices by expressing perturbation
direction as the difference vector between two word embeddings
and mapping a word replacement from the synonym set to a dif-
ference vector for gradient estimation, and (3) has an extra step
of mapping the continuous gradient to a discrete word based on
the cosine similarity metric. As a result, it can flexibly aggregate
explored perturbations as the gradient to search the optimal one.

4.2 Text Adversarial Attack
Text adversarial attacks can be categorized intowhite-box and black-
box ones. Early work mainly focuses on the white-box scenario,
assuming that attackers have the knowledge of parameter gradients.
For instance, Ebrahimi et al. [9] propose a white-box method which
constructs text adversarial examples based on the gradients of one-
hot input vectors. However, this setting is not realistic in real-
world applications. Therefore, black-box text adversarial attacks
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have received more attention recently, and the current approaches
mainly focus on the following two settings:

(1) Soft-label black-box text adversarial attacks, where attackers
have the knowledge of the prediction score distribution of different
categories given an input text sample [10, 13, 16, 23]. In conse-
quence, their adversarial example generation processes normally
adopt a greedy mechanism to determine the replaced word posi-
tions and their substitutions. For instance, TextFooler [13] ranks the
order of attacked words by their importance scores and selects the
candidate that can lead to the highest prediction score drop of the
original label as the replacement before the text turns adversarial.

(2) Hard-label black-box text adversarial attacks, where attack-
ers only know the top-1 predicted label [18]. The first success-
ful work in this setting [18] uses GA for optimization. One of its
limitations is that GA depends on past adversarial candidates for
mutation and crossover, which may accumulate errors caused by
the past inappropriate substitutions. Besides, this approach has to
frequently query the victim models for all candidates to achieve
convergence. Later, Ye et al. [25] propose a gradient-based hard-
label attack method named TextHoaxer in the tight-budget setting.
However, TextHoaxer samples virtual perturbation direction for
gradient estimation, which can only use partial candidates and does
not fully exploit all candidates for gradient estimation.

Different from the aforementioned methods, LeapAttack pro-
poses a more effective gradient-based optimization framework with
respect to difference vectors of the perturbation in the word em-
bedding space for the hard-label text adversarial attack. Using the
embedding space as a bridge of perturbation directions and candi-
date words, it alleviates existing limitations by getting perturbation
directions for gradient estimation from concrete word candidates
and mapping estimated gradient back to the replacement word by
cosine distance under one adversarial candidate.

5 CONCLUSION
Hard-label text adversarial attack is a more challenging setting that
can more realistically reveal the robustness of text DNNs. However,
the performance of existing methods is limited by the discrete
nature of text data, which hinders the development of gradient-
based optimization. To relieve this conundrum in the hard-label
setting, we propose a gradient-based solution named LeapAttack
empowered by expressing perturbation in the high-dimensional
word embedding space. In each iteration, it firstly estimates the
gradient at the decision boundary by transforming the semantic
deviation brought by each sampled word into a difference vector.
Later, it maps the estimated gradient to an updated replacement by
the cosine similarity. Extensive experiment results on eight datasets
consistently demonstrate that LeapAttack is generally effective and
efficient in crafting high-quality text adversarial examples with
the highest semantic similarity and lowest perturbation rate in the
hard-label setting.
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