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Abstract

Patient similarity learning aims to derive a clinically mean-

ingful similarity metric to measure the similarity between a

pair of patients according to their historical clinical infor-

mation, which could help to predict the clinical outcomes

of the patient of interest. However, the patient clinical data

are usually complex, and contain much irrelevant and redun-

dant information, which makes it difficult to learn the sim-

ilarity metric with high accuracy. Although some methods

have been proposed to address the complex nature of patient

data, they overemphasize sparsity-based relevant feature se-

lection and fail to take into consideration the redundant fea-

tures that are highly correlated with each other, and this

heavily degrades the accuracy of the learned results. To ad-

dress the above challenges, we propose a novel uncorrelated

patient similarity learning approach, which can not only se-

lect the most relevant features for the learning task, but

also guarantee that the selected features have low correla-

tions with each other. Additionally, to address the scenarios

where the patient data are distributed across different sites,

we extend the proposed approach and design a distributed

mechanism, based on which the similarity metric can be ac-

curately learned without directly accessing the raw patient

data at each site. The desirable performance of the pro-

posed methods are verified through extensive experiments

conducted on both real-world and synthetic datasets.

Keywords: Patient similarity, Feature selection, Dis-
tributed similarity learning

1 Introduction

With the prevalence of the adoption of Electronic
Health Records (EHRs), various clinical information
are becoming available for a large number of patients.
These wealth clinical information make it possible to
perform patient similarity analysis, which is a funda-
mental problem in healthcare informatics. The goal of
patient similarity learning is to measure the similarity
between a pair of patients according to their clinical in-
formation, which could help to retrieve similar reference
cases for predicting the clinical outcome of interest. As
patient similarity learning is capable of improving clin-
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ical decision making without incurring additional effort
from physicians, it has been widely used in various ap-
plications, such as target patient retrieval [20], medical
prognosis [22] and clinical pathway analysis [9].

The key part of patient similarity learning is to learn
a clinically meaningful and precise similarity metric that
can be used to measure the similarity between a pair of
patients. However, since the patient data collected from
real-world applications are usually high dimensional,
complex and noisy, the features extracted from these
data to characterize patient profiles may contain much
irrelevant and redundant information, which can hide
the relationship between the learning task and the most
relevant features. Thus, it is essential to remove such
irrelevant and redundant information when conducting
patient similarity learning so that an accurate distance
metric can be learned based on the extracted features.

To address the complex nature of patient data, some
sparse feature selection methods [28, 16, 8, 26, 15, 17]
have been proposed to select a subset of relevant fea-
tures that are highly correlated with the learning task,
but these methods assume that the input features are
nearly independent, and they ignore the correlations
among the selected features. However, in reality, most
features in patient data exhibit strong correlations,
which can be seen from the example shown in Fig. 1.
Those correlated features may share similar properties
and thus reveal overlapped or redundant information,
which makes the knowledge discovery process much dif-
ficult [11]. Especially when the number of selected fea-
tures is very limited, it is desirable to remove the over-
lapped and redundant features so that more discrimi-
native information can be extracted from the data to
conduct the patient similarity learning task.

Towards this end, we propose a novel Uncorrelated
Patient Similarity Learning approach(UnPSL), which
can not only select the most relevant features for the
learning task, but also guarantee that the selected
features have low correlations with each other. More
specifically, we first formulate the patient similarity
learning problem as a maximum likelihood estimation
problem, and then introduce two regularization terms to
control the feature selection process such that only the
most relevant and uncorrelated features can be selected.
The advantages of the proposed approach are threefold:
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Figure 1: Feature correlations on real-world patient
datasets. (a): Colon cancer dataset [1]. (b): Parkin-
son’s disease dataset [14]. (c): Leukemia dataset [7].
The horizontal axis represents the absolute pearson cor-
relation coefficient, and the vertical axis represents the
cumulative percentage of the feature pairs whose ab-
solute pearson correlation coefficients are less than or
equal to a specific value, e.g., for the Colon cancer
dataset, the cumulative percentage of the feature pairs
whose pearson correlation coefficients are less than or
equal to 0.3 is only around 20%, which means that the
remaining 80% feature pairs are highly correlated.

Firstly, it increases the interpretability of the learned
models, as the selected features are discriminative and
can well represent the feature space covered by the
entire dataset. Secondly, it is more robust to the
noisy and redundant information, and the learned result
can be achieved with high accuracy. Last but not
least, the learning process in the proposed approach is
not dependent on any particular data, and it can be
generally used to other applications, e.g., multi-class
regression.

Additionally, we take into consideration the scenar-
ios where the patient data are distributed across differ-
ent sites (e.g., hospitals, medical centers). Due to vari-
ous reasons such as the concern of privacy leakage, the
consumption of time or other resources when upload-
ing data, these sites usually are not willing to provide
the raw patient data to the learner who aims to learn
the clinical similarity metric from the collected data. In
such cases, it is difficult for the learner to achieve satis-
factory accuracy based on the above proposed approach.
To address this challenge, we extend the aforementioned
learning approach and propose a novel distributed pa-
tient similarity learning mechanism, based on which the
similarity metric can be accurately learned without di-
rectly accessing the raw patient data at each site.

The main contributions of this paper are summa-
rized as follows. Firstly, we propose a novel patient
similarity learning method which can select the most
relevant and uncorrelated features so that the learned
metric can be more accurate. Secondly, we are the first
to address the patient similarity learning problem in
the distributed scenarios, and we propose a novel dis-
tributed learning mechanism, based on which the simi-
larity metric can be accurately learned without directly
accessing the raw patient data at each site. Thirdly, ex-

tensive experiments based on both real-world and syn-
thetic datasets are conducted to verify the desirable per-
formance of the proposed approaches.

2 Problem Formulation

In this section, we describe the problem setting of this
paper. Suppose there are n patients and the data
samples of them are denoted as X = {xi ∈ Rd}ni=1,
where xi ∈ Rd is the data sample of the i-th patient and
it is a d-dimensional vector (i.e., contains d features).
For each pair of samples (xi, xj), we assume that a label
yij is given and it denotes whether the two samples
are similar (e.g., the two patients belong to the same
cohort or have the same disease) or not. If xi and xj
are similar, yij is equal to 1, otherwise it is equal to
−1. We use Is = {(xi, xj) : yij = 1} to denote the
set of sample pairs whose labels are equal to 1 and
Id = {(xi, xj) : yij = −1} to denote the set of pairs
whose labels are equal to −1.

Given the two sets of sample pairs (i.e., Is and Id),
our goal in this paper is to learn a similarity function

(2.1) s(xi, xj) = xTi Mxj = xTi W
TWxj = (Wxi)

TWxj ,

which can measure the similarity between any two in-
puts (samples) xi and xj . Here, s(xi, xj) is parameter-
ized by a positive semidefinite matrix M , which can be
decomposed as M = WTW (W ∈ Rd∗d) and W is the
similarity metric that needs to be learned in a super-
vised manner.

3 Methodology

In this section, we provide the details of the proposed
patient similarity learning approach. We first formulate
the patient similarity learning process as an optimiza-
tion problem, and then discuss how to effectively solve
this optimization problem through adopting the alter-
nating direction method of multipliers (ADMM) [2].

3.1 Learning Framework. In our proposed ap-
proach, the similarity learning process is formulated as
an optimization problem. Specifically, we first model
the learning process based on maximum likelihood
method, i.e., estimating the parameters which maxi-
mize the likelihood of the data samples in the training
dataset. Then, we introduce a term to select the most
relevant features through conducting sparse feature se-
lection. Last but not least, we introduce another term
which can effectively reduce the correlations among the
selected features. The details are described as follows.

Maximum likelihood estimation. As described
in Section 2, our goal in this paper is to learn the
similarity function s(xi, xj), which is parameterized by
W , based on the given two sets of sample pairs (i.e.,
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Is and Id). To achieve the goal, we adopt maximum
likelihood estimation here. That is to say, we need to
find a matrix W which can maximize the likelihood of
the given sample pairs in the training dataset (i.e., Is
and Id). We model the probability for each sample pair
(xi, xj) and the corresponding label yij as

(3.2) Pr(yij |xi, xj ;M, b) =
1

(1 + exp(−yij(s(xi, xj)− b)))
,

where yij ∈ {−1, 1} and b is the bias, which also works
as a threshold. The two patients xi and xj are treated as
similar (i.e., yij = 1) only when the similarity measure
s(xi, xj) is greater than or equal to b, otherwise they are
treated as dissimilar (i.e., yij = −1). In this paper, we
set b as 1 by following existing works. Since Eqn. (3.2)
is capable of providing the probability that a pair of
patients are similar or not, it is particularly suitable
for disease prediction and decision making in medical
diagnosis and prognosis. Then the log likelihood of the
sample pairs in the two sets Is and Id is:

L(W, b) = log Pr(Is) + log Pr(Id)

= −
∑

(xi,xj)∈Is

log(1 + exp(−(s(xi, xj)− b)))

−
∑

(xi,xj)∈Id

log(1 + exp((s(xi, xj)− b))),

(3.3)

where s(xi, xj) = (Wxi)
TWxj . Thus, the problem of

the patient similarity learning can be transformed to
the maximum likelihood optimization problem. Since
maximizing the log likelihood is equivalent to minimiz-
ing the negative log likelihood, we can get the following
optimization problem

min
W∈Rd∗d

f1(W, b) = − log Pr(Is)− log Pr(Id)

=
∑

(xi,xj)∈Is

log(1 + exp(−(s(xi, xj)− b)))

+
∑

(xi,xj)∈Id

log(1 + exp((s(xi, xj)− b)))

(3.4)

Sparse feature selection. Clinical data col-
lected from real-world applications are usually high-
dimensional, and contain many irrelevant features,
which makes the patient similarity learning process very
difficult. Thus, it is essential to design a feature selec-
tion method such that the most relevant features can be
selected when conducting patient similarity learning.

To achieve the goal, we conduct sparse feature
selection during the learning process. Suppose wi is
the i-th row vector of W , i.e., W = [w1, w2, ..., wd]

T .
Then wi can be regarded as a vector that measures the
importance of the i-th feature in the data samples. For

the purpose of selecting the most relevant information,
we expect that only a few number of wi are non-
zero and the selected features are enough to embed
the original data to its low dimensional representation.
When we adopt l2-norm of wi as a metric to measure its
contribution, the following optimization problem should
be taken into consideration during the learning process.

(3.5) min
W∈Rd∗d

d∑
i=1

‖wi‖2 =
d∑
i=1

(
d∑
j=1

W 2
ij)

1/2

This optimization framework will enforce some rows of
W to be all zero, and the corresponding features in the
data samples will not be selected.

Uncorrelated feature selection. Although
sparse feature selection can remove much irrelevant in-
formation from the data samples, it does not take fea-
ture correlation into account. In reality, the features in
patients’ data are often highly correlated, and these cor-
related features may share similar properties and con-
tain redundant information. It is obvious that the ac-
curacy of the learned results will be degraded if all the
correlated features are adopted at the same time, be-
cause the features that are highly correlated with others
can not provide much more information for the learning
process. Thus, it is desirable that the selected features
are uncorrelated as much as possible (especially when
the number of selected features is limited) such that
more information can be extracted from the data sam-
ples when conducting patient similarity learning.

In order to select the uncorrelated features, we
first normalize the data samples X ∈ Rn∗d such that
the values of each feature in the data have zero-mean
and unit-variance. Then we calculate the correlation
coefficient matrix R = (rkl) ∈ [−1, 1]d∗d for the d
features. Here rkl is the correlation coefficient between
the k-th and l-th features and it is calculated as

(3.6) rkl =

∑n
i=1 xkixli√∑n

i=1 x
2
ki

√∑n
i=1 x

2
li

.

To select features which are uncorrelated as much as
possible, we should let the similarity metric W satisfy

(3.7) min
W∈Rd∗d

Trace((W ·WT )(R�R)T ),

where� is Hadamard product of matrices. In Eqn.(3.7),
we use the square of the correlation coefficient matrix
(i.e., (R � R)T ) instead of the original correlation
coefficient matrix (i.e., R) to eliminate the effect of
anti-correlation. The objective function in Eqn. (3.7)
guarantees that when the k-th feature and the l-th
feature are highly correlated, i.e., the value of (rkl)

2

is large, the two features are not treated as equally
important and they can not be selected simultaneously
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during the feature selection process. Thus, the goal of
selecting as many uncorrelated features as possible can
be achieved.

The learning framework. Taking both sparse
and uncorrelated feature selection into consideration, we
formalize the patient similarity learning problem as the
following optimization problem

min
W∈Rd∗d

L1(W ) =
∑

(xi,xj)∈Is

log(1 + exp(−(xTi W
TWxj − b)))

+
∑

(xi,xj)∈Id

log(1 + exp(xTi W
TWxj − b)))

+ λ1

d∑
i=1

‖wi‖2 + λ2Trace((W ·WT )(R�R)T ),

(3.8)

where λ1,λ2 ≥ 0 are the tuning parameters, and the
correlation coefficient matrix R is positive semidefinite.
Next, we will discuss how to solve this optimization
problem to learn the similarity metric W .

3.2 Optimization. Firstly, we transform the opti-
mization problem into the following equivalent problem:

min
W,V,Z

L2(W ) =
∑

(xi,xj)∈Is

log(1 + exp(−(xTi W
TWxj − b)))

+
∑

(xi,xj)∈Id

log(1 + exp(xTi W
TWxj − b)))

+ λ1

d∑
i=1

‖Vi‖2 + λ2Trace((Z · ZT )(R�R)T )

s.t. W = V = Z.

(3.9)

Since W = V and V = Z, the above problem is
equivalent to problem (3.8). Here we adopt the ADMM
algorithm to solve Eqn.(3.9). Through introducing the
Lagrange multipliers ∆V ∈ Rd∗d,∆W ∈ Rd∗d, we get
the Lagrange form of the above optimization problem:

Lρ(W,V,Z,∆W ,∆V ) =∑
(xi,xj)∈Is

log(1 + exp(−(xTi W
TWxj − b)))

+
∑

(xi,xj)∈Id

log(1 + exp(xTi W
TWxj − b))) + λ1

d∑
i=1

‖Vi‖2

+ λ2Trace((Z · ZT )(R�R)T )+ < ∆W ,W − Z >F

+
ρ

2
‖W − Z‖2F+ < ∆V , V − Z >F +

ρ

2
‖V − Z‖2F

(3.10)

where ρ > 0 is a nonnegative penalty parameter, and
‖·‖F denotes the Frobenius norm. Then we solve the
optimization problem with an iterative procedure based

on the ADMM algorithm [2]. More specifically, in the
t-th iteration, the parameters are updated as follows:

W t+1 ← argmin
W

Lρ1(W ) =∑
(xi,xj)∈Is

log(1 + exp(−(xTi W
TWxj − b)))

+
∑

(xi,xj)∈Id

log(1 + exp(xTi W
TWxj − b))

+
ρ

2
‖W − (Zt − U tW )‖2F ,

(3.11)

V t+1 ← argmin
V

Lρ2(V ) =λ1

d∑
i=1

‖Vi‖2

+
ρ

2
‖V − (Zt − U tV )‖2F ,

(3.12)

Zt+1 ← argmin
Z

Lρ3(Z) = λ2Trace((Z · ZT )(R�R)T )

+ ρ‖Z − 1

2
(W t+1 + V t+1 + U tW + U tV )‖2F ,

(3.13)

(3.14) U t+1
W ← U tW +W t+1 − Zt+1,

(3.15) U t+1
V ← U tV + V t+1 − Zt+1,

where UW = 1
ρ∆W and UV = 1

ρ∆V . Zt, U tW and U tV
are calculated in the previous iteration (If it is the first
iteration, these parameters are randomly initialized).
The above procedure will be iteratively conducted until
the convergence criterion is satisfied. Then the optimal
similarity metric W can be achieved. Next, we will
discuss how to update each parameter according to the
above equations.

W -update. We first fix V,Z,∆W and ∆V , and
then update W according to Eqn. (3.11). Since the
objective function in Eqn. (3.11) is convex and differen-
tiable, we adopt gradient decent method to update W ,
and the gradient is calculated as follows:

∂Lρ1
∂W

=
∑

(xi,xj)∈Is

(−W )(xix
T
j + xjx

T
i )

1 + exp((s(xi, xj)− b))

+
∑

(xi,xj)∈Id

W (xix
T
j + xjx

T
i )

1 + exp(−(s(xi, xj)− b))

+ ρ(W − (Zt − U tW ))

(3.16)

V -update. In order to update V , we fix W,Z,∆W

and ∆V , and adopt the proximal operator [13]. Then
Eqn.(3.12) can be efficiently computed via the following
element-wise thresholding operation

V t+1
ij = (Zt − UtV )ij [1−

λ1

ρ‖(Zt − UtV )i,:‖2
]+,(3.17)
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where (Zt−U tV )i,: is the i-th row of (Zt−U tV ), and the
operator [·]+ means taking the maximum of zero and
the argument inside.

Z-update. In this step, we fix W,V,∆W and ∆V

and update Z through minimizing Lρ3 in Eqn. (3.13).
Let the partial derivate of Lρ3 with respect to Z be 0,
and we can get

Zt+1 =ρ(λ2(R�R)T

+ λ2(R�R) + 2ρI)−1(W t+1 + V t+1 + U tW + U tV ).

(3.18)

UW , UV -update. UW and UV are just updated
according to Eqn. (3.14) and Eqn. (3.15), respectively.

The proposed patient similarity learning method is
summarized in Algorithm 1. The convergence criterion
can be a predetermined number of iterations or a
threshold of the change in the estimated parameters in
two consecutive iterations. Based on the convergence
analysis for the ADMM algorithm in paper [2], we
can know the proposed algorithm could produce a
globally optimal solution for the optimization problem
in Eqn. (3.8).

Algorithm 1 Uncorrelated patient similarity learning

Input: The sets of sample pairs Is and Id, λ1, λ2, ρ
Output: The similarity metric W

1: Initialize V 0, Z0, U0
W , U

0
V ;

2: repeat
3: Update W according to Eqn. (3.11);
4: Update V according to Eqn. (3.12);
5: Update Z according to Eqn. (3.13);
6: U t+1

W ← U tW +W t+1 − Zt+1;
7: U t+1

V ← U tV + V t+1 − Zt+1;
8: until Convergence criterion is satisfied;
9: return The similarity metric W .

4 Distributed Patient Similarity Learning

In the above proposed approach, we assume that the
learner has got the patient samples (i.e., training data)
when conducting the similarity learning algorithm.
However, in reality, the patient data are usually dis-
tributed across different sites (e.g., hospitals or medical
centers), and these sites might not be willing to pro-
vide the raw data due to privacy concerns or resource
consumption. This makes it difficult for the learner
to achieve satisfactory learning accuracy. To address
this challenge, we extend the aforementioned learning
approach and propose a distributed patient similarity
learning mechanism, based on which the learner could
learn an accurate similarity metric without directly ac-
cessing the raw data at each site.

Suppose there is a set of parties (i.e., sites) P =
{1, 2, 3, ..., P}. Each party p has two sets of sample
pairs: Ips = {(xip, xjp) : ypij = 1)} and Ipd = {(xip, xjp) :
ypij = −1)}. Here xip and xjp are two patient samples
of party p, and ypij is equal to 1 if the two patients are
similar, otherwise ypij is equal to −1. The main idea of
the proposed distributed mechanism can be described
as follows: each party p first learns local parameters
based on the local data (i.e., Ips and Ipd ) and uploads
them to the learner. Then the learner combines all
the received parameters and derives a global similarity
metric W , which is then sent to each party p and used
for updating the local parameters. This procedure is
iteratively conducted until the convergence criterion is
satisfied and the final W is what the learner wants to
learn. In order to achieve the goal, we formulate the
following optimization problem by considering the data
samples from all the parties:

min
W,{Wp}Pp=1

∑
p∈P

∑
(xip,xjp)∈I

p
s

log(1 + exp(−(sp(xip, xjp)− b)))

+
∑
p∈P

∑
(xip,xjp)∈I

p
d

log(1 + exp((sp(xip, xjp)− b)))

+ λ2

∑
p∈P

Trace((Wp ·WT
p )(Rp �Rp)T )

+ λ1‖W‖2,1
s.t. W = Wp, p = 1, 2, 3, ..., P,

(4.19)

where Wp and Rp represent the local similarity met-
ric and pearson correlation matrix of party p, respec-
tively, and sp(xip, xjp) = xTipW

T
p Wpxjp. All opti-

mal W,W1,W2, ...,WP are the same as the solution
of the original problem. By adopting the scaled aug-
mented Lagrangian multiplier, the optimization prob-
lem in Eqn. (4.19) can be formulated as

min
W,{Wp,Up}Pp=1

L3(W,W1, ...,WP , U1, ..., UP ) =∑
p∈P

∑
(xip,xjp)∈I

p
s

log(1 + exp(−(sp(xip, xjp)− b)))

+
∑
p∈P

∑
(xip,xjp)∈I

p
d

log(1 + exp((sp(xip, xjp)− b)))

+ λ2

∑
p∈P

Trace((Wp ·WT
p )(Rp �Rp)T ) + λ1‖W‖2,1

+
λ3

2

∑
p∈P

‖Wp −W + Up‖2Frob,

(4.20)

where λ3 > 0 is the penalty parameter, and
U1, U2, ..., UP are the dual variables. We solve the opti-
mization problem in Eqn. (4.20) through conducting an
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iterative procedure. More specifically, in the t-th itera-
tion, {Wp}Pp=1, W and {Up}Pp=1 are updated as follows.

W t+1
p = argmin

Wp

∑
(xip,xjp)∈I

p
s

log(1 + exp(−(sp(xip, xjp)− b)))

+
∑

(xip,xjp)∈I
p
d

log(1 + exp((sp(xip, xjp)− b)))

+ λ2Trace((Wp ·WT
p )(Rp �Rp)T )

+
λ3

2
‖Wp −W t + U tp‖2F

(4.21)

(4.22)

W t+1 = argmin
W

λ3

2

∑
p∈P

‖W t+1
p −W + U tp‖2F + λ1‖W‖2,1

(4.23) U t+1
p = U tp +W t+1

p −W t+1

That is to say, in each iteration the p-th party first
updates its local similarity metric Wp based on the pa-
rameters W and Up which are calculated in the previous
iteration, then uploads Wp and Up to the learner. After
receiving the parameters {Wp, Up}Pp=1 from all the par-
ties, the learner updates the global similarity metric W
and sends it to each party to update Up and Wp. This
procedure is iteratively conducted until convergence and
final W is the learned result. As we can see, each party
only communicates with the learner with a consider-
ably small amount of messages and the raw data are
not uploaded to the learner. Therefore, the privacy is-
sues as well as the communication and time cost are all
addressed. Meanwhile, the proposed distributed mech-
anism always converges to the global optimal solution
W ∗ which is learned from the whole dataset according
to Algorithm 1. The convergence proof can be easily
derived from paper [2].

5 Experiments

In this section, we conduct experiments on both real-
world and synthetic datasets to evaluate the perfor-
mance of the proposed approaches.

Baseline Methods. We compare the proposed
approach with the following state-of-the-art similarity
learning methods. LowRank [28] conducts patient
similarity learning by selecting sparse features, and a
low-rank structure is encoded to the learning process
to implement the sparse feature selection. R2ML [8]
learns the local distance metric by introducing a sparse-
inducing matrix norm to control the rank of the involved
mappings. LMNN [25] is a classical distance metric
learning method, and its goal is to let the k-nearest
neighbors always belong to the same class while exam-
ples from different classes are separated by a large mar-
gin. ITML [4] aims to learn the Mahalanobis distance

by minimizing the differential relative entropy between
two multivariate Gaussians. GMML [27] formulates
distance metric learning process as an unconstrained
smooth and convex optimization problem. Addition-
ally, we also take Cosine and Euclidean as baselines,
which adopt cosine similarity and l2-norm distance to
measure the similarity between two samples.

5.1 Experiments on Real-world Datasets. In
this experiment, the three real-world datasets men-
tioned in Fig. 1 are used to measure the performance
of the proposed UnPSL.

• Colon cancer dataset [1]. This dataset contains
40 tumor and 22 normal colon tissues which are
characterized by 2000 genes. The samples were
collected from 40 different colon cancer patients, in
which 22 patients provided both normal and tumor
samples. Since this dataset does not contain test
set, we use the leave-one-out cross validation to
evaluate the performance of the proposed method.

• Parkinson’s disease dataset [14]. This dataset
contains 22 features and 195 biomedical voice sam-
ples collected from 31 people, in which 23 were di-
agnosed with Parkinson’s Disease (PD). Here we
randomly select 98 samples as the training dataset,
and the remaining samples are taken as the test set.

• Leukemia dataset [7]. This dataset consists of
72 samples and each of them is characterized by
7129 genes. There are 38 training data samples of
which 27 are acute lymphoblastic leukaemia (ALL)
and 11 are acute myeloid leukaemia (AML). The
test set consists of 34 samples of which 20 are
ALL and 14 are AML. We process this dataset
with the method adopted in [5]: (i) thresholding:
floor of 100 and ceiling of 16,000; (ii) filtering:
exclusion of genes with (max−min) ≤ 500 or
max /min ≤ 5, where max and min represent
the maximum and minimum expression levels of
a particular gene across the samples respectively;
(iii) base 10 logarithmic transformation.

Performance comparison. We first compare the
performance of UnPSL with that of the baselines on the
above real-world patient datasets. In this paper, the
KNN classifier is adopted to evaluate the performance
of the methods, and we use Accuracy, Recall, F1-score
and F2-score as the performance measures. For each
method, we repeat the experiment 5 times and report
the average results in Table 1. From Table 1, we can see
UnPSL performs much better than the baselines on all
of the datasets. The reason is that we take both sparse
and uncorrelated feature selection into consideration,
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Table 1: Performance comparison on real-world datasets

Colon cancer dataset Parkinson’s disease dataset Leukemia dataset
Accuracy Recall F1-score F2-score Accuracy Recall F1-score F2-score Accuracy Recall F1-score F2-score

Cosine 0.6452 0.6452 0.7843 0.6944 0.6433 0.7810 0.7448 0.7597 0.7059 0.8000 0.7619 0.7843
Euc 0.7419 0.7541 0.8519 0.7904 0.7753 0.7720 0.8416 0.7983 0.7941 0.9000 0.8372 0.8739

ITML 0.8197 0.5714 0.6857 0.6122 0.7938 0.8393 0.8528 0.8437 0.8824 0.8462 0.9167 0.8730
Low-Rank 0.7903 0.8167 0.8829 0.8419 0.7979 0.8742 0.7389 0.7199 0.8824 0.9091 0.9375 0.9202

GMML 0.7903 0.6818 0.6977 0.6881 0.7443 0.8712 0.8358 0.8564 0.8235 0.8500 0.8500 0.8500
LMNN 0.7581 0.8393 0.8624 0.8484 0.8151 0.8621 0.8721 0.8661 0.8824 0.8261 0.9048 0.8559
R2ML 0.8065 0.6818 0.7143 0.6944 0.7835 0.8784 0.8609 0.8713 0.8889 0.9091 0.9091 0.9091
UnPSL 0.8226 0.9444 0.9027 0.9273 0.8222 0.8823 0.8797 0.8802 0.9412 0.9500 0.9500 0.9500

which guarantees that more relevant information can
be extracted from the data samples when conducting
patient similarity learning. Additionally, the results
also show that Cosine and Euc have relatively poor
performance when compared with other methods. This
is mainly because Cosine and Euc can not well capture
the statistical regularity of the data that needs to be
learned from a large set of training samples.

Convergence. To evaluate the convergence of
UnPSL, we calculate the primal residual rt = ‖W t −
Zt‖F in each iteration t [2]. Figure 2 reports the results
on the Parkinson’s Disease dataset. Here we vary t from
2 to 60 and conduct the experiment for three times (i.e.,
Trial 1, Trial 2 and Trial 3). Each time we randomly
select 98 samples from the dataset as the training
data. From this figure we can see the primal residuals
gradually converge to 0 with the increase of the number
of iterations. This confirms that the convergence can be
guaranteed in our proposed algorithm.
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Figure 2: Primal residuals w.r.t Iterations on the
Parkinson’s disease dataset.

5.2 Experiments on Synthetic Datasets. Here,
we evaluate the performance of UnPSL on synthetic
datasets. We first introduce the data generation pro-
cedure, and then report the experimental results.

Data generation. We adopt the method men-
tioned in paper [11] to generate the synthetic datasets
which have linear-correlated features. We first gener-
ate two data X1 = [x11, x

1
2, ..., x

1
n] ∈ Rd∗n and X2 =

[x21, x
2
2, ..., x

2
n] ∈ Rd∗n, where x1i ∼ N (0d∗1, Id∗d) and

x2i ∼ N (0d∗1, Id∗d). Here I is an identity matrix. Then
we generate data X3 based on a linear combination
of X1 and X2, i.e., X3 = 0.5(X1 + X2) + ε, where

ε ∼ N (−0.1e, 0.1Id∗d). Finally, we construct the data
X = [X1;X2;X3] ∈ R3d∗n. It is obvious that the fea-
tures in dimension [2d+1, 3d] of X are highly correlated
with the features in dimension [1, d] and [d+ 1, 2d]. Let
W 1 ∈ R3d∗3d, where W 1

i,j ∼ Uniform(−0.5, 0.5). Sup-

pose W 2 = [1, ..., 1, 0, ..., 0] is a 3∗d dimensional vector,
of which the first 2∗d elements are ones and the remain-
ing d elements are zeros. Let W = diag(W 2) ∗W 1 ∈
R3d∗3d. Then for any sample pair (xi, xj) ∈ X, we can
use the similarity function s(xi, xj) that is parameter-
ized by W to generate the similarity label yij ∈ {−1, 1}.

Performance comparison. In this experiment,
we assume that there are 400 data samples (i.e., n =
400), and generate three synthetic datasets by setting
d as 20, 40 and 60, respectively. For each dataset, we
randomly select 200 samples as the training data, and
the remaining samples are taken as the testing data.
Then we calculate Accuracy, Recall, F1-score and F2-
score for each method. Here we repeat the experiment
10 times and report the average results in Table 2, from
which we can see UnPSL performs much better than
the baselines in all cases, and this further confirms that
the similarity metric learned by our proposed method
is more accurate than that learned by the baselines.
Additionally, the results also show that the performance
of the methods goes worse when d varies from 20 to
60. This is mainly because the higher dimensional
(when d is larger) data usually has much more noisy
and redundant information.

5.3 Experiments for Distributed Patient Simi-
larity Learning. In this section, we evaluate the per-
formance of the proposed distributed learning approach
on two datasets, i.e. the Parkinson’s disease dataset and
a synthetic dataset (n = 600, d = 10). For simplicity,
we consider a distributed scenario with 3 parties (i.e.,
P = 3) in this experiment. For each dataset, we equally
divide it into three parts, and then assign them to the
3 parties respectively.

Suppose W ∗ is the similarity metric learned from
the original dataset in the centralized scenario (accord-
ing to Algorithm 1), and W t is the similarity metric
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Table 2: Performance comparison on synthetic datasets

d = 20 d = 40 d = 60
Accuracy Recall F1 score F2 score Accuracy Recall F1 score F2 score Accuracy Recall F1 score F2 score

Cosine 0.5200 0.5103 0.5183 0.5133 0.4976 0.4960 0.4983 0.4965 0.4896 0.5565 0.5390 0.5485
Euc 0.6144 0.3489 0.4617 0.3864 0.5872 0.3309 0.4365 0.3661 0.5384 0.3351 0.4379 0.3697

ITML 0.5408 0.4956 0.5237 0.5022 0.5228 0.4720 0.5102 0.4845 0.5092 0.5749 0.5682 0.5699
Low-Rank 0.8808 0.8574 0.8751 0.8644 0.8520 0.5440 0.7046 0.5986 0.8267 0.8560 0.6489 0.7386

GMML 0.7248 0.7424 0.7152 0.7311 0.6184 0.6017 0.5937 0.5978 0.5704 0.6766 0.6148 0.6493
LMNN 0.8960 0.8704 0.8785 0.5022 0.8080 0.7967 0.8033 0.7993 0.7840 0.7681 0.7970 0.7794
R2ML 0.9107 0.6573 0.6533 0.6358 0.8144 0.8227 0.8171 0.8199 0.8080 0.8150 0.8187 0.8164
UnPSL 0.9464 0.9371 0.9441 0.9398 0.8712 0.8807 0.8735 0.8778 0.8413 0.8626 0.8594 0.8613

learned in the t-th iteration of the distributed learning
approach (according to Eqn. (4.22)). Then we calculate
‖W ∗−W t‖F to measure the deviation between the two
similarity metrics. Figure 3 shows the results on the
Parkinson’s disease dataset and synthetic dataset when
iteration t varies from 2 to 40. From this figure we can
see the value of ‖W ∗ −W t‖F converges to 0 gradually
as the number of iterations increases. That is to say,
the proposed distributed learning approach can achieve
high accuracy as the learned similarity metric is almost
the same with that learned in the centralized scenario.
Additionally, this figure also shows that the proposed
distributed learning approach converges faster on the
synthetic dataset than that on the Parkinson’s disease
dataset. This is due to each party has more data sam-
ples for the synthetic dataset such that fewer iterations
are needed to get the optimal solution.
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Figure 3: ‖W ∗−W t‖F w.r.t Iterations on two datasets.
(a): Parkinson’s Disease dataset. (b): the synthetic
dataset.

6 Related Work

Patient Similarity. LSML proposed in [20] aims to
learn the similarity metric by using physician feedback
as the supervision. [6, 19, 18] incorporate LSML into
their proposed methods to address clinically relevant is-
sues. Given that obtaining physicians’ input is difficult
and expensive in reality, Wang et al. [23] propose a
weak supervised learning method. Due to the fact that
patient similarity is highly context sensitive, Sun et al.
[24] use both statistical and wavelet based features to
capture the characteristics of patients. [30, 21] propose
different deep learning frameworks to learn patient rep-

resentations for similarity measuring. Based on patient
similarity learning, [29] proposes a method to identify
which drug is the most effective for a given patient. Un-
der the medical social networks, [10] presents a method
to calculate similarities of patient profiles for recom-
mending people to other members. Considering the high
dimensionality of medical data, Zhan et al. [28] propose
a sparse feature selection method for patient similarity
learning. However, these papers assume that the input
features are nearly independent, while in real-world, the
features in patients’ data are usually highly correlated.

Distance Metric Learning. Distance metric
learning has been studied in many works [25, 8, 4, 27].
Given some data pairs labeled as similar or dissimilar,
these works try to learn similarity metrics to make
similar pairs close to each other and separate dissimilar
pairs apart. However, they do not consider feature
correlations when conducting the learning algorithms.

Uncorrelation in other settings. [3, 11] address
the uncorrelated lasso, but these methods can not be
directly adopted here. In the context of multi-class
regression, [12] proposes a method to eliminate the
feature correlation via putting correlated features into
the same group. However, it requires to know the groups
in advance, which is also the drawback of group lasso.
Additionally, it is time-costing and not suitable for the
distributed settings.

7 Conclusions

In this paper, we propose a novel uncorrelated patient
similarity learning approach which can extract more
discriminative information from the patient data so that
the learned similarity metric can be more accurate.
To address the scenarios where the patient data are
distributed across different sites, we also propose a
distributed patient similarity learning approach, based
on which the similarity metric can be accurately learned
without directly accessing the raw data at each site.
Experiments on both real-world patient datasets and
synthetic datasets demonstrate the advantages of the
proposed approaches.
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